

# **CHORDS AND ARCS**

# THEOREM 1

If two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal.





Given: ABCD and A'B'C'D' are two congruent circles with centres O and O'respectively. So that

$$\widehat{mADC} = \widehat{mA'D'C'}$$

To Prove:  $m\overline{AC} = m\overline{A'C'}$ 

Construction: Join O with A and C, and join O' with A' and C'.

So that we can form  $\Delta^s$  OAC and O'A'C'.

| [100]:                                                                                             |                                             |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|
| Statements                                                                                         | Reasons                                     |  |  |  |
| In two equal circles ABCD and $A'B'C'D'$                                                           | Given                                       |  |  |  |
| with centres O and O' respectively.                                                                | ;                                           |  |  |  |
| $\widehat{mADC} = \widehat{mA'D'C'}$                                                               | Given                                       |  |  |  |
| $\therefore \qquad m \angle AOC = m \angle A'O'C'$                                                 | Central angles subtended by equal arcs of   |  |  |  |
|                                                                                                    | the equal circles.                          |  |  |  |
| Now in $\triangle AOC \leftrightarrow \triangle A'O'C'$                                            |                                             |  |  |  |
| $m\overline{OA} = m\overline{O'A'}$                                                                | Radii of equal circles                      |  |  |  |
| $m\angle AOC = m\angle A'O'C'$                                                                     | Already Proved                              |  |  |  |
| $m\overline{OC} = m\overline{O'C'}$                                                                | Radii of equal circles                      |  |  |  |
| $\therefore  \Delta AOC \cong \Delta A'O'C'$                                                       | S.A.S postulate                             |  |  |  |
| and in particular $m\overline{AC} = m\overline{A'C'}$                                              | corresponding sides of congruent triangles. |  |  |  |
| Similarly we can prove the theorem in the                                                          |                                             |  |  |  |
| same circle.                                                                                       |                                             |  |  |  |
| and in particular $\overline{mAC} = \overline{mA'C'}$<br>Similarly we can prove the theorem in the |                                             |  |  |  |

# THEOREM 2

#### **Converse of Theorem 1**

If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent. OR

In equal circles or in the same circle, if two chords are equal, they cut off equal arcs.





Given: ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively.

So that chord  $m\overline{AC} = m\overline{A'C'}$ .

To Prove:  $\widehat{mADC} = \widehat{mA'D'C'}$ 

Construction: Join O with A and C, and join O' with A' and C'.

Proof:

|      | Statements                                       | Reasons                                      |
|------|--------------------------------------------------|----------------------------------------------|
| In   | $\triangle AOC \leftrightarrow \triangle A'O'C'$ |                                              |
|      | $m\overline{OA} = m\overline{O'A'}$              | Radii of equal circles                       |
|      | $m\overline{OC} = m\overline{O'C'}$              | Radii of equal circles                       |
|      | $m\overline{AC} = m\overline{A'C'}$              | Given                                        |
|      | $\triangle AOC \cong \triangle A'O'C'$           | $S.S.S \cong S.S.S.$                         |
| ⇒    | $m\angle AOC = m\angle A'O'C'$                   | Corresponding angles of congruent triangles. |
| Henc | ce $\widehat{mADC} = \widehat{mA'D'C'}$          | Arcs corresponding to equal central angles.  |

# Example 1: A point P on the circumference is equidistant from the radii $\overline{OA}$ and $\overline{OB}$ .

Prove that  $\widehat{mAP} = \widehat{mBP}$ .

Given:  $\overline{AB}$  is the chord of a circle with centre O. Point P on the circumference of the circle is equidistant from the radii  $\overline{OA}$  and  $\overline{OB}$ .

So that  $m\overline{PR} = m\overline{PS}$ .

To Prove:  $\widehat{mAP} = \widehat{mBP}$ 

Construction: Join O with P. Write  $\angle 1$  and  $\angle 2$  as shown in the figure.



#### Proof:

|      | Statements                                                  | Reasons                                                                                                                     |
|------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| In   | $\angle$ rt $\triangle$ OPR and $\angle$ rt $\triangle$ OPS |                                                                                                                             |
|      | $m\overline{OP} = m\overline{OP}$                           | Common                                                                                                                      |
|      | $m\overline{PR} = m\overline{PS}$                           | Point P is equidistance from radii                                                                                          |
|      | m = m = m                                                   | (Given)                                                                                                                     |
|      | $\triangle OPR \cong \triangle OPS$                         | $(\operatorname{In} \angle \operatorname{rt} \Delta^{\operatorname{s}} \qquad \operatorname{H.S} \cong \operatorname{H.S})$ |
| So   | $m \angle 1 = m \angle 2$                                   | Central angles of a circle                                                                                                  |
|      | Chord AP ≅ Chord BP                                         |                                                                                                                             |
| Hend | $\operatorname{ce} \ m\widehat{AP} = m\widehat{BP}$         | Arcs corresponding to equal chords in a circle.                                                                             |

# THEOREM 3

Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).



Given: ABC and A'B'C' are two congruent circles with centres O and O' respectively. So that  $m\overline{AC} = m\overline{A'C'}$ .

To Prove:  $\angle AOC \cong \angle A'O'C'$ 

Construction: Let if possible  $m \angle AOC \neq m \angle A'O'C'$  then consider  $\angle AOC \cong \angle A'O'D'$ 

| 1001.                                                                                    |                                                             |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Statements                                                                               | Reasons                                                     |
| $\angle AOC \cong \angle A'O'D'$                                                         | Construction                                                |
| $\therefore \qquad \widehat{AC} \cong \widehat{A'D'} \qquad \dots \dots \dots \dots (i)$ | Arcs subtended by equal Central angles in congruent circles |
| $\overline{AC} = \overline{A'D'}$ (ii)                                                   | Using Theorem 1                                             |
| But $\overline{AC} = \overline{A'C'}$ (iii)                                              | Given                                                       |
| $\therefore \overline{A'C'} = \overline{A'D'}$                                           | Using (ii) and (iii)                                        |
| Which is only possible, if $C'$ co                                                       | incides                                                     |
| with $D'$ .                                                                              |                                                             |
| Hence $m \angle A'O'C' = m \angle A'O'D' \dots$                                          | (iv)                                                        |
| But $m\angle AOC = m\angle \angle A'O'D'$                                                | (v) Construction                                            |
| $\Rightarrow$ m $\angle$ AOC = m $\angle$ A'O'C'                                         | Using (iv) and (v)                                          |

Corollary 1: In congruent circles or in the same circle, if central angles are equal then corresponding sectors are equal.

Corollary 2: In congruent circles or in the same circle, unequal arcs will subtend unequal central angles.

Example 1: The internal bisector of a central angle in a circle bisects an arc on which it stands.

#### Given:

In a circle with centre O.  $\overline{OP}$  is an internal bisector of central angle AOB.

#### To Prove:

$$\widehat{AP} \cong \widehat{BP}$$



Draw  $\overline{AP}$  and  $\overline{BP}$ , then write  $\angle 1$  and  $\angle 2$  as shown in the figure.

#### Proof:

| Statements                                           | Reasons                                                    |  |  |  |
|------------------------------------------------------|------------------------------------------------------------|--|--|--|
| In $\triangle OAP \leftrightarrow \triangle OBP$     |                                                            |  |  |  |
| $m\overline{OA} = m\overline{OB}$                    | Radii of the same circle                                   |  |  |  |
| m∠1 = m∠2                                            | Given $\overline{OP}$ as an angle bisector of $\angle AOB$ |  |  |  |
| and $m\overline{OP} = m\overline{OP}$                | Common                                                     |  |  |  |
| $\Delta OAP \cong \Delta OBP$                        | S.A.S postulate                                            |  |  |  |
| Hence $\overline{AP} \cong \overline{BP}$            |                                                            |  |  |  |
| $\Rightarrow \qquad \widehat{AP} \cong \widehat{BP}$ | Arcs corresponding to equal chords in a circle.            |  |  |  |

**Example 2:** In a circle if any pair of diameters are  $\bot$  to each other then the lines joining its ends in order, form a square.

#### Given:

 $\overline{AC}$  and  $\overline{BD}$  are two perpendicular diameters of a circle with centre O.

So ABCD is a quadrilateral.

#### To Prove:

ABCD is a square

#### Construction:

Write  $\angle 1$ ,  $\angle 2$ ,  $\angle 3$ ,  $\angle 4$ ,  $\angle 5$  and  $\angle 6$  as shown in the figure.

#### Proof:

| Statements                                                                                                                                                                                                     | Reasons                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $\overline{AC}$ and $\overline{BD}$ are two $\bot$ diameters of a circle with centre O.<br>$\therefore m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = 90^{\circ}$ $\Rightarrow$                           | Given Pair of diameters are ⊥ to each other. Arcs opposite to the equal central |
| $\therefore m\widehat{AB} = m\widehat{BC} = m\widehat{CD} = m\widehat{DA}$ $\Rightarrow m\widehat{AB} = m\widehat{BC} = m\widehat{CD} = m\widehat{DA} \qquad (i)$ Moreover $m\angle A = m\angle 5 + m\angle 6$ | angles in a circle. Chords corresponding to equal arcs.                         |
| $m\angle A = 45^{\circ} + 45^{\circ} = 90^{\circ}$                                                                                                                                                             | Using (i), (ii) and (iii).                                                      |
| Hence ABCD is a square                                                                                                                                                                                         | ,                                                                               |

# THEOREM 4

If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.



Given: ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively.  $\overline{AC}$  and  $\overline{A'C'}$  are chords of circles ABCD and A'B'C'D' respectively and  $m\angle AOC = m\angle A'O'C'$ .

To Prove:  $m\overline{AC} = m\overline{A'C'}$ 

|                          | Statements                                  | Reasons                                    |  |  |  |
|--------------------------|---------------------------------------------|--------------------------------------------|--|--|--|
| In ΔOAC                  | $\leftrightarrow \Delta O'A'C'$             |                                            |  |  |  |
|                          | $m\overline{O'A'}$<br>C = m $\angle A'O'C'$ | Radii of congruent circles Given           |  |  |  |
| $m\overline{OC} =$       | $= m\overline{O'C'}$                        | Radii of congruent circles                 |  |  |  |
| ∴ ∆OAC                   | $\cong \Delta O'A'C'$ S.A.S                 | postulate                                  |  |  |  |
|                          |                                             | Corresponding sides of congruent traingles |  |  |  |
| Hence $m\overline{AC} =$ | $m\overline{A'C'}$                          |                                            |  |  |  |

# **EXERCISE 11.1**

Q.1 In a circle two equal diameters  $\overline{AB}$  and  $\overline{CD}$  intersect each other. Prove that  $\overline{MAD} = \overline{MBC}$ .

Given: A circle with centre "O". Two diameters

 $\overline{AB}$  and  $\overline{BC}$ , intersecting at point O.

To Prove:  $\overline{MAD} = \overline{MBC}$ 

Construction:

Join A to D and C to B



| Statements                                       | Reasons                                   |  |  |  |  |
|--------------------------------------------------|-------------------------------------------|--|--|--|--|
| In $\triangle AOD \leftrightarrow \triangle BOC$ |                                           |  |  |  |  |
| $\overline{OA} \cong \overline{OB}$              | Radii of the same circle                  |  |  |  |  |
| ∠AOD ≅ ∠BOC                                      | Vertical angles are congruent             |  |  |  |  |
| $\overline{OD} \cong \overline{OC}$              | Radii of the same circle                  |  |  |  |  |
| $\therefore  \Delta AOD \cong \Delta BOC$        | $S. A. S \cong S. A. S$                   |  |  |  |  |
| $\overline{AD} \cong \overline{BC}$              | Corresponding sides of congruent triangle |  |  |  |  |
| Or $m\overline{AD} = \overline{mBC}$             |                                           |  |  |  |  |

### Q.2. In a circle prove that the arcs between two parallel and equal chords are equal.

Given: A circle with centre O. Two chords AB and CD Such that

 $\overline{AB} \parallel \overline{CD}$  and  $\overline{mAB} = \overline{mCD}$ 

To Prove:  $\widehat{MAC} = \widehat{MBD}$ 

Construction: Join A to D and B to C. Such that  $\overline{AD}$  and  $\overline{CD}$  intersect each other at central point O.



| Statements                                           | Reasons                                |
|------------------------------------------------------|----------------------------------------|
| AD and BC are line segment intersecting at centre O. |                                        |
| ∠AOC and ∠BOD are central angles.                    | Angle subtended at centre.             |
| m∠AOC = m∠BOD                                        | Vertical angles                        |
| $\widehat{\text{mAC}} = \widehat{\text{mBB}}$        | Within the same circle arcs opposite   |
| mAC = mBB                                            | to the equal central angles are equal. |

# Q.3. Give a geometric proof that a pair of bisecting chords are the diameters of a circle.

Given: A circle and two chords  $\overline{AB}$  and  $\overline{CD}$  bisecting each other at point O. i.e.

$$\overline{\text{mAO}} = \overline{\text{mOB}}$$
 and  $\overline{\text{mCO}} = \overline{\text{mOD}}$ 

To Prove: Chords  $\overline{AB}$  and  $\overline{CD}$  are diameters.

#### **Proof:**



# Q.4. If C is the midpoint of an arc ACB in a circle with centre O. Show that line segment OC bisects the chord AB.

Given: A circle with centre "O"  $\widehat{ACB}$  is an arc with C as its midpoint and  $\widehat{mAC} = \widehat{mCB}$ . Center "O" is joined with C such that  $\overline{OC}$  meets  $\overline{AB}$  at M.

**To Prove:**  $m\overline{AM} = m\overline{BM}$ 

Construction: Join center "O" with A and B to make central angle AOB.

| Proof:                                                                                                                                                                                                                         | C                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Statements                                                                                                                                                                                                                     | Reasons                                                                                                 |
| ∠AOB is central angle                                                                                                                                                                                                          | Construction                                                                                            |
| $\therefore  m \angle 1 = m \angle 2  \dots (i)$                                                                                                                                                                               | C is the midpoint of $\widehat{ACB}$ (Given)                                                            |
| In $\triangle AOM \longleftrightarrow \triangle BOM$ $\overline{OM} \cong \overline{OM}$ $\angle 1 \cong \angle 2$ $\overline{OA} \cong \overline{OB}$ $\triangle AOM \cong \triangle BOM$ $\overline{AM} \cong \overline{BM}$ | Common Proved  Radii of the same Circle $S.A.S \cong S.A.S$ Corresponding sides of congruent triangles. |
| Hence $mAM = mBM$                                                                                                                                                                                                              |                                                                                                         |

# **MISCELLANEOUS EXERCISE – 11**

| Q.1 N | lultiple C | hoice Que | estio | ns    |     |     |
|-------|------------|-----------|-------|-------|-----|-----|
| Four  | possible   | answers   | arc   | given | for | the |
|       | ving quest |           |       |       |     |     |

- 1. A 4 cm long chord subtends central angle of 60°. The radial segment of this, circle
  - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 2. If an arc of a circle subtends a central angle of 60°, then the corresponding chord of the arc will make the central angle of:
  - (a) 20°
- (b) 40°
- (c) 60°
- (d) 80°
- 3. The semi circumference and the diameter of a circle both subtend a central angle of
  - (a) 90°
- (b) 180°
- (c) 270°
- (d) 360°
- **4.** The arcs opposite to incongruent central angles of a circle arc always:
  - (a) Congruent
- (b) incongruent
- (c) parallel
- (d) perpendicular
- 5. If a chord of a circle subtends a central angle of 60°, then the length of the chord and the radial segment are:
  - (a) congruent
- (b) incongruent
- (c) parallel
- (d) perpendicular

- 6. The length of a chord and the radial segment of a circle are congruent, the central angle made by the chord will be:
  - (a) 30°
- (b) 45°
- (c) 60°
- (d) 75°
- 7. Out of two congruent arcs of a circle, if one arc makes a central angle of 30° then the other arc will subtend the central angle of:
  - (a) 15°
- (b) 30°
- (c) 45°
- (d) 60°
- 8. The chord length of a circle subtending a central angle of 180° is always:
  - (a) less than radial segment
  - (b) equal to the radial segment
  - (c) double of the radial segment
  - (d) none of these
- **9.** A pair of chords of a circle subtending two congruent central angles is:
  - (a) congruent
- (b) incongruent
- (c) over lapping (d) parallel
- 10. An arc subtends a central angle of 40° then the corresponding chord will subtended a central angle of:
  - (a)  $20^{\circ}$
- (b) 40°
- (c) 60°
- (d) 80°

## ANSWER KEY

| 1. | d | 2. | С | 3. | b | 4. | b | 5.  | a |
|----|---|----|---|----|---|----|---|-----|---|
| 6. | С | 7. | b | 8. | С | 9. | a | 10. | b |