

ANGLE IN A SEGMENT OF A CIRCLE

THEOREM 1

The measure of a central angle of a minor arc of a circle, is double that of the angle subtended

by the corresponding major arc.

Given: \widehat{AC} is an arc of a circle with centre O

Whereas $\angle AOC$ is the central angle and $\angle ABC$ is circum angle.

To Prove: $m\angle AOC = 2m \angle ABC$

Construction: Join B with O and produce it to meet the circle at D.

Write angles $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$ as shown in the figure.

Proof:

Proof:		
	Statements	Reasons
As	$m\angle 1 = m\angle 3$ (i)	Angles opposite to equal sides in ΔOAB
and	$m \angle 2 = m \angle 4$ (ii)	Angles opposite to equal sides in ΔOBC.
Now	$m \angle 5 = m \angle 1 + m \angle 3 \dots$ (iii)	External angle is the sum of internal opposite
Simila	urly m∠6=m∠2+∠4(iv)	angles.
Again	*	Using (i) and (iii)
and	$m \angle 6 = m \angle 4 + m \angle 4 = 2m \angle 4(vi)$	Using (ii) and (iv)
Then	from figure	
\Rightarrow	$m \angle 5 + m \angle 6 = 2m \angle 3 + 2m \angle 4$	Adding (v) and (vi)
\Rightarrow	$m\angle AOC = 2(m\angle 3 + m\angle 4) = 2 m \angle ABC$,

Example:

The radius of a circle is $\sqrt{2}$ cm. A chord 2 cm in length divides the circle into two segments.

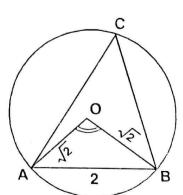
Prove that the angle of larger segment is 45°.

Given: In a circle with centre O and radius $m\overline{OA} = m\overline{OB} = \sqrt{2}$ cm.

The length of chord $\overline{AB} = 2$ cm divides the circle into two segments with ACB as larger one.

To Prove: $m\angle ACB = 45^{\circ}$

Construction: Join O with A and O with B.



Statements	Reasons
In ΔOAB	
$(m\overline{OA})^2 + (m\overline{OB})^2 = (\sqrt{2})^2 + (\sqrt{2})^2$	$m\overline{OA} = m\overline{OB} = \sqrt{2} \text{ cm}$
= 2 + 2 = 4	Given: $m\overline{AB} = 2cm$
$= (2)^2 = (m\overline{AB})^2$	Which being a central angle standing
	on an arc AB.
∴ \triangle AOB is right angled triangle with m \angle AOB = 90°	By theorem 1
•	
Then $m\angle ACB = \frac{1}{2} m\angle AOB$	Circum angle is half of the central angle.
$= \frac{1}{2} (90^{\circ}) = 45^{\circ}$	

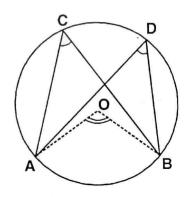
THEOREM 2

Any two angles in the same segment of a circle are equal.

Given: ∠ACB and ∠ADB are the circum angles in the same segment of a circle with centre O.

Construction: Join O with A and O with B.

So that $\angle AOB$ is the central angle.



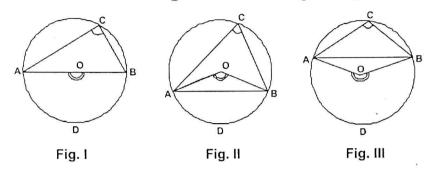
Proof:

Statements	Reasons		
Standing on the same arc AB of a circle.			
∠AOB is the central angle whereas	Construction		
∠ACB and ∠ADB are circum angles	Given		
∴ m∠AOB = 2m∠ACB(i)	By theorem 1		
and $m\angle AOB = 2m\angle ADB$ (ii)	By theorem 1		
⇒ 2m∠ACB = 2m∠ADB	Using (i) and (ii)		
Hence, m∠ACB = m∠ADB	,		

THEOREM 3

The angle,

- In a semi-circle is a right angle,
- In a segment greater than a semi circle is less than a right angle,
- In a segment less than a semi-circle is greater than a right angle.



Given: AB is the chord corresponding to an arc ADB

Whereas $\angle AOB$ is a central angle and $\angle ACB$ is a circum angle of a circle with centre O.

To Prove:

In fig (I) If sector ACB is a semi circle then $m\angle ACB = 1\angle rt$

In fig (II) If sector ACB is greater than a semi circle then m∠ACB <1∠rt

In fig (III) If sector ACB is less than a semi circle then $m\angle ACB > 1 \angle rt$.

Proof:

St	atements	Reasons
In each figure, \overline{AB} is the o	Given	
∠AOB is the central angle	e standing on an arc ADB.	
Whereas ∠ACB is the cir	cum angle	Given
Such that $m\angle AOB = 2m\angle$	∠ACB(i)	
Now in fig (I) m∠AOB =	180°	By theorem 1
∴ m∠AOB = 2∠rt	(ii)	A straight angle
⇒ m∠ACB = 1∠rt		
In fig (II) m \angle AOB <180°		Using (i) and (ii)
∴ m∠AOB <2∠rt	(iii)	
\Rightarrow m \angle ACB < 1 \angle rt		
In fig (III) m∠AOB> 180	00	Using (i) and (iii)
\therefore m \angle AOB > 2 \angle rt	(iv)	
⇒ m∠ACB>1∠rt		
		Using (i) and (iv)

Corollary 1:

The angles subtended by an arc at the circumference of a circle are equal.

Corollary 2:

The angles in the same segment of a circle are congruent.

THEOREM 4

The opposite angles of any quadrilateral inscribed in a circle are supplementary.

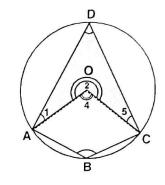
Given: ABCD is a quadrilateral inscribed in a circle with centre O.

To Prove: $\begin{cases} m\angle A + m\angle C = 2\angle rts \\ m\angle B + m\angle D = 2\angle rts \end{cases}$

Construction: Draw \overline{OA} and \overline{OC} .

Write $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and

 $\angle 6$ as shown in the figure.



Statements	Reasons
Standing on the same arc ADC, $\angle 2$ is a central angle.	Arc ADC of the circle with centre O.
Whereas ∠B is the circum angle	
$\therefore \qquad m \angle B = \frac{1}{2} \; (m \angle 2) \qquad \qquad \dots \dots \dots (i)$	By theorem 1
Standing on the same arc ABC, ∠4 is a central angle	Arc ABC of the circle with centre O.
whereas ∠D is the circum angle.	,
$\therefore \qquad m \angle D = \frac{1}{2} (m \angle 4) \qquad \dots \dots \dots (ii)$	By theorem 1
$\Rightarrow \qquad m \angle B + m \angle D = \frac{1}{2} m \angle 2 + \frac{1}{2} m \angle 4$	Adding (i) and (ii)
$= \frac{1}{2} (m\angle 2 + m\angle 4) = \frac{1}{2} $ (Total central angle)	-
i.e., $m\angle B + m\angle D = \frac{1}{2} (4\angle rt) = 2\angle rt$	
Similarly $m\angle A + m\angle C = 2\angle rt$	

Corollary 1: In equal circles or in the same circle if two minor arcs are equal then angles inscribed by their corresponding major arcs are also equal.

Corollary 2: In equal circles or in the same circle, two equal arcs subtend equal angles at the circumference and vice versa.

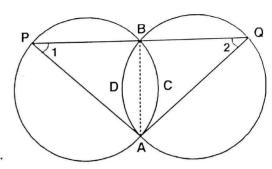
Example 1: Two equal circles intersect in A and B. Through B, a straight line is drawn to meet the circumferences at P and Q respectively. Prove that $m\overline{AP} = m\overline{AQ}$.

Given: Two equal circles cut each other at points A and B. A straight line PBQ drawn through B meets the circles at P and Q respectively.

To Prove: $m\overline{AP} = m\overline{AQ}$

Construction: Join the points A and B. Also draw \overline{AP} and \overline{AQ} .

Write $\angle 1$ and $\angle 2$ as shown in the figure.



Proof

Statements	Reasons
$ mA\widehat{C}B = mA\widehat{D}B $ ∴ $m \angle 1 = m \angle 2$ So $m\overline{AQ} = m\overline{AP}$ or $m\overline{AP} = m\overline{AQ}$	Arcs about the common chord AB. Corresponding angles made by opposite arcs. Sides opposite to equal angles in \triangle APQ.

Example 2: ABCD is a quadrilateral circumscribed about a circle.

Show that $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$

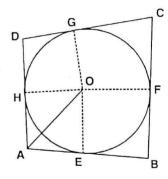
Given: ABCD is a quadrilateral circumscribed about a circle with centre O.

So that each side becomes tangent to the circle.

To Prove: $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$

Construction: Drawn $\overline{OE} \perp \overline{AB}$, $\overline{OF} \perp \overline{BC}$

 $\overline{OG} \perp \overline{CD}$ and $\overline{OH} \perp \overline{DA}$



Proof

or

Statements	Reasons
$\therefore m\overline{AE} = m\overline{HA} and m\overline{EB} = m\overline{BF} \qquad \dots $	Since tangents drawn from a
$m\overline{CG} = m\overline{FC}$ and $m\overline{GD} = m\overline{DH}$ (ii)	point to the circle are equal in length.
$(m\overline{AE} + m\overline{EB}) + (m\overline{CG} + m\overline{GD}) = (m\overline{BF} + m\overline{FC}) + (m\overline{DH} + m\overline{HA})$	Adding (i) and (ii).
or $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$	5

EXERCISE 12.1

Q.1 Prove that in a given cyclic quadrilateral, sum of opposite angles is two right angles and conversely.

Given:

A circle with centre "O"

ABCD is a cyclic quadrilateral

To Prove:

 $m\angle B + m\angle D = 180^{\circ}$

 $m\angle BCD + m\angle DAB = 180^{\circ}$

Construction: Join O with A and C

Proof:

11001.	В
Statements	· Reasons
$m\angle 1 = 2m\angle D(i)$	$\angle 1$, $\angle 2$ are central angles and $\angle D$, $\angle B$ are
$m\angle 2 = 2m\angle B(ii)$	circum angles in Arcs
$m\angle 1 + m\angle 2 = 2m\angle D + 2m\angle B$	Adding (i) and (ii)
$m\angle 1 + m\angle 2 = 2(m\angle D + m\angle B)$	
or $2(m\angle D + m\angle B) = m\angle 1 + m\angle 2$	By symmetric property
$2(m\angle D + m\angle B) = 360^{\circ}$	Sum of all central angles is 360°
$m\angle D + m\angle B = \frac{360^{\circ}}{2}$	Dividing by 2
$m\angle D + m\angle B = 180^{\circ}$	
Similarly m∠BCD + m∠DAB=180°	

Q.2 Show that parallelogram inscribed in a circle will be a rectangle.

Given: ABCD is a parallelogram inscribed in the circle with centre "O"

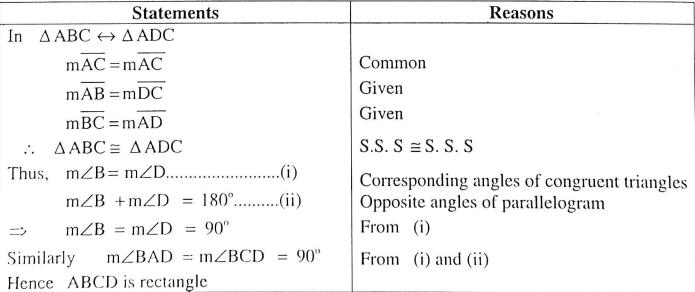
$$m\overline{AB} = m\overline{DC}$$
 and $\overline{AB} \parallel \overline{DC}$
 $m\overline{AD} = m\overline{BC}$ and $\overline{AD} \parallel \overline{BC}$

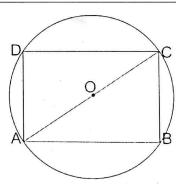
To Prove:

ABCD is a rectangle

Construction: Join A with C

Proof:





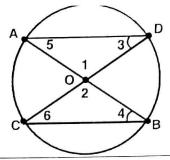
Q.3 AOB and COD are two intersecting chords of a circle. Show that Δ 'AOD and BOC are equiangular.

Given: In a circle \overline{AOB} and \overline{COD} are two intersecting chords at point O.

To Prove: \triangle AOD and \triangle BOC are equiangular

Construction: Join A with C and D. Join B with C and D.

Proof:



Statements	Reasons		
$m \angle 1 \cong m \angle 2(i)$	Vertical angles		
\overline{AC} is chord and angles $\angle 3$, $\angle 4$ are in the same segment.			
$\angle 3 \cong \angle 4(ii)$			
Now \overline{BD} is chord and angles $\angle 5$, $\angle 6$ are in the same			
segments			
Therefore $\angle 5 \cong \angle 6$ (iii)			
Thus, $\triangle AOD$ and $\triangle BOC$ are equiangular	From (i), (ii) and (iii)		

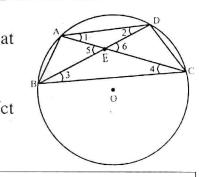
Q.4 AD and \overrightarrow{BC} are two parallel chords of a circle prove that arc $\overrightarrow{AB} \cong \overrightarrow{are}$ CD and arc $\overrightarrow{AC} \cong \overrightarrow{arc}$ BD.

Given: A circle with centre "O". Two chords \overline{AD} and \overline{BC} are such that $\overline{AD} \parallel \overline{BC}$.

To Prove: arc $AB \cong arc CD$ and $arc AC \cong arc BD$

Construction: Join A to B and C. Join D to B and C. \overline{AC} and \overline{BD} intersect each other at point E. some angles are named as $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5, \angle 6$.

Proof:



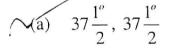
rooi:		
	Statements	Reasons
	$m\angle 1 = m\angle 3$ (i)	Angles inscribed by an arc in the same segment
	$m\angle 2 = m\angle 4$ (ii)	are equal.
	$m\angle 1 = m\angle 4$ (iii)	Alternate angles are congruent $(\overline{AD} \overline{BC})$
	$m \angle 3 = m \angle 4$ (iv)	
	$m\angle 1 = m\angle 2$ (v)	From (i) and (iii)
In	$\triangle AEB \leftrightarrow \triangle DEC$	From (ii) and (iii)
	$\overline{AE} \cong \overline{ED}$	Side apposite to aqual anales (v)
	$m \angle 5 = m \angle 6$	Side opposite to equal angles (v)
	$\overline{BE} \cong \overline{EC}$	vertical angles
	$\triangle AED \cong \triangle DEC$	Sides opposite to equal angles (iv)
	$\overline{AB} \cong \overline{CD}$	$S.A.S \cong S.A.S$
	- 12-20	Corresponding sides of congruent.
Thus	$\operatorname{arc} AB \cong \operatorname{arc} CD$ (Hence Proved)	Arcs corresponding to congruent chords are
	$\widehat{\operatorname{mBC}} \cong \widehat{\operatorname{mCB}}$	congruent.
	$\widehat{\text{mBA}} + \widehat{\text{mAC}} = \widehat{\text{mCD}} + \widehat{\text{mDB}}$	
	**************************************	Self congruent
	$\overrightarrow{mAB} + \overrightarrow{mAC} = \overrightarrow{mAB} + \overrightarrow{mBD}$	
	$\widehat{\text{mAC}} = \widehat{\text{mBD}}$	\therefore arc $\overrightarrow{AB} \cong$ arc CD proved
or	arc AC≅arc BD (Hence proved)	

MISCELLANEOUS EXERCISE – 12

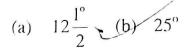
Q. 1 Multiple Choice Questions

Four possible answers are given for the following questions.

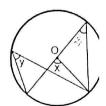
- A circle passes through the vertices of a right angled $\triangle ABC$ with $m\overline{AC} = 3$ cm and mBC = 4cm, $m \angle C = 90^{\circ}$, Radius of the circle is:
 - (a) 1.5 cm
- (b) 2.0 cm
- € 2.5 cm
- (d) 3.5 cm
- In the adjacent circular figure, central 2. and inscribed angles stand on the same are AB.
 - (a) m/1 = m/2
 - $m \angle 1 = 2m \angle 2$ (b)
 - (c) $m \angle 2 = 3m \angle 1$
 - $4d m \angle 2 = 2m \angle 1$
- In the adjacent figure if $m \angle 3 = 75^{\circ}$, then 3. find $m \angle 1$ and $m \angle 2$



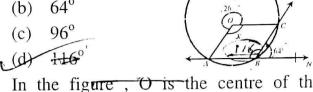
- (b) $37\frac{1''}{2}$, 75°
- (c) 75° , $37\frac{1^{\circ}}{2}$
- (d) 75°.75°
- Given that O is the centre of the circle, the angle marked x will be.
 - (a) $12\frac{1^{\circ}}{2}$ (b) 25° (c) 50° (d) 75°
- Given that O is the 5. centre of the circle the angle marked y will be.



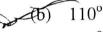
- (c) 50° (d) 75°



- In the figure, O is the centre of the circle 6. and \overrightarrow{ABN} is a straight line. The obtuse angle AOC = x is.
 - 32° (a)
 - 64° (b)

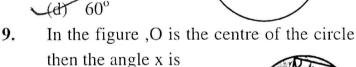


- In the figure, O is the centre of the 7. circle, then the angle x is
 - 55° (a)

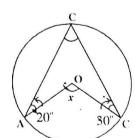


3(d) 125°

- In the figure, O is the centre of the circle 8. then angle x is.
 - 15° (a)
 - 30° (b)
 - 45° (c)
 - fet? 60°



- 15° (a)
- 30° (b)
- 45° (c)
- (d) 60°
- In the figure, O is the centre of the circle 10. then the angle x is.
 - 50° (a)
 - 75° (b)
 - 100° (e)
 - 125° (d)



ANSWER KEY

1.	С	2.	d	3.	a	4.	c	5.	b
6.	d	7.	·b	8.	b	9.	d	10.	С