Unit 04

PARTIAL FRACTIONS

Fraction:

The quotient of two numbers or algebraic expressions is called a fraction. The quotient is indicated by a bar (—). We write, the dividend on top of the bar and the divisor below the bar.

For example, $\frac{x^2+2}{x-2}$ is a fraction with $x-2 \neq \infty$

0. If x - 2 = 0, then the fraction is not defined because $x-2=0 \implies x=2$ which make the denominator of the fraction zero.

Rational Fraction:

An expression of the form $\frac{N(x)}{D(x)}$, where N(x)

and D(x) are polynomials in x with real coefficients, is called a rational fraction. The polynomial $D(x) \neq 0$ in the expression.

For example,
$$\frac{x^2+3}{(x+1)^2(x+2)}$$
 and $\frac{2x}{(x-1)(x+2)}$

are rational fractions.

Proper fraction:

A rational fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$ is

called a proper fraction if degree of the polynomial N(x) in the numerator is less than the degree of the polynomial D(x) in the denominator. For example, $\frac{2}{x+1}, \frac{2x-3}{x^2+4}$ and

$$\frac{3x^2}{x^3+1}$$
 are proper fractions.

Improper Fraction:

A rational fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$ is

called an improper fraction if degree of the polynomial N(x) is greater or equal to the degree of the polynomial D(x).

e.g.,
$$\frac{5x}{x+2}$$
, $\frac{3x^2+2}{x^2+7x+12}$, $\frac{6x^4}{x^3+1}$ are improper fractions.

How we can we reduce the improper fraction into proper fraction?

Every improper fraction can be reduced by division to the sum of a polynomial and a proper fraction. This means that if degree of the numerator is greater or equal to the degree of the denominator, then we can divide N(x) by D(x) obtaining a quotient polynomial Q(x) and a remainder polynomial R(x), whose degree is less than the degree of D(x).

Thus
$$\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$
, with $D(x) \neq 0$,

where Q(x) is quotient polynomial and $\frac{R(x)}{D(x)}$

is a proper fraction.

Example 1: Resolve the fraction

$$\frac{x^3 - x^2 + x + 1}{x^2 + 5}$$
 into proper fraction.

Solution:

Let $N(x) = x^3-x^2+x+1$ and $D(x) = x^2+5$ By long division, we have

$$\frac{x^{2} + 5\sqrt{x^{3} - x^{2} + x + 1}}{\pm x^{3} \pm 5x} \\
 - x^{2} - 4x + 1 \\
 \overline{+ x^{2} \pm 5} \\
 \overline{-4x + 6} \\
 \overline{x^{3} - x^{2} + x + 1} = (x - 1) + \frac{-4x + 6}{x^{2} + 5}$$

Activity:

Separate proper and improper fractions

(i)
$$\frac{x^2 + x + 1}{x^2 + 2}$$
 (ii) $\frac{2x + 5}{(x+1)(x+2)}$

(iii)
$$\frac{x^3 + x^2 + 1}{x^3 - 1}$$
 (iv) $\frac{2x}{(x-1)(x-2)}$

Ans.

- (i) Improper Fraction
- (ii) Proper Fraction
- (iii) Improper Fraction
- (iv) Proper Fraction

Activity: Convert the following improper fractions into proper fractions:

(i)
$$\frac{3x^2-2x-1}{x^2-x+1}$$
 (ii) $\frac{6x^3+5x^2-6}{2x^2-x-1}$

(i) Solution:
$$\frac{3x^2 - 2x - 1}{x^2 - x + 1}$$

Let $N(x) = 3x^2-2x-1$ and $D(x) = x^2-x+1$ By long division, we get

$$\begin{array}{r}
3 \\
3x^{2} - x + 1 \\
 \pm 3x^{2} \mp 3x \pm 3 \\
x - 4
\end{array}$$

Thus
$$\frac{3x^2 - 2x - 1}{x^2 - x + 1} = 3 + \frac{x - 4}{x^2 - x + 1}$$

(ii) Solution:
$$\frac{6x^3 + 5x^2 - 6}{2x^2 - x - 1}$$

Let $N(x) = 6x^3 + 5x^2 - 6$ and $D(x) = 2x^2 - x - 1$ By long division, we get

$$\begin{array}{r}
3x+4 \\
2x^2-x-1 \\
\hline
\cancel{6x^2+5x^2-6} \\
\underline{\pm 6x^2 \mp 3x^2 \mp 3x} \\
8x^2+3x-6 \\
\underline{\pm 8x^2 \mp 4x \mp 4} \\
7x-2
\end{array}$$

Thus

$$\frac{6x^3 + 5x^2 - 6}{2x^2 - x - 1} = (3x + 4) + \frac{7x - 2}{2x^2 - x - 1}$$

Resolution of Fraction into Partial Fractions:

Every proper fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$

can be resolved into an algebraic sum of components fractions. These components fractions of a resultant fraction are called its partial fractions. Here four cases of partial fractions are discussed, as follows:

Rule I:

Resolution of an algebraic fraction into partial fractions, when D(x) consists of non-repeated linear factors:

If linear factor (ax + b) occurs as a factor of D(x), then there is a partial fraction of the form $\frac{A}{ax+b}$, where A is a constant to be found.

In
$$\frac{N(x)}{D(x)}$$
, the polynomial D(x) may be written as,

 $D(x) = (a_1x + b_1) (a_2x + b_2) \dots (a_nx + b_n)$ with all factors distinct.

We have

$$\frac{N(x)}{D(x)} = \frac{A_1}{a_1x+b_1} + \frac{A_2}{a_2x+b_2} + \frac{A_3}{a_3x+b_3} + \dots + \frac{A_n}{a_nx+b_n}$$
Where $A_1A_2...A_n$ are constants to be determined.

Example 1:

Resolve
$$\frac{5x+4}{(x-4)(x+2)}$$
 into partial fractions.

Solution:

Let
$$\frac{5x+4}{(x-4)(x+2)} = \frac{A}{x-4} + \frac{B}{x+2}$$
(i)

Multiplying throughout by (x-4)(x+2),

we get
$$5x + 4 = A(x+2) + B(x-4)$$
 (ii)

Equation (ii) is an identity, which holds good for all values of x and hence for x = 4 and x = -2

Put
$$x - 4 = 0$$
 i.e $x = 4$ in equation (ii) We get $5(4) + 4 = A(4 + 2)$ $20+4 = A(6)$

$$6A = 24$$
 \Rightarrow $A = 4$

Put x+2 = 0 i.e, x = -2 in equation (ii) We get 5(-2)+4=B(-2-4) -10+4=B(-6)

$$\Rightarrow -6B = -6 \Rightarrow B=1$$

Putting the value of A and B in equation (i)

Thus required partial fractions are $\frac{4}{x-4} + \frac{1}{x+2}$

Hence
$$\frac{5x+4}{(x-4)(x+2)} = \frac{4}{x-4} + \frac{1}{x+2}$$

This method is called the zeros' method. This method is especially useful with linear factors in the denominator D(x).

Identity: An identity is an equation, which is satisfied by all the values of the variables involved. For example, 2(x + 1) = 2x+2 and $\frac{2x^2}{x} = 2x$ are identities, as these equations are satisfied by all values of x.

Example 2:

Resolve $\frac{1}{3+x-2x^2}$ into partial fractions.

Solution: $\frac{1}{3+x-2x^2}$ can be written as for

convenience
$$\frac{-1}{2x^2-x-2}$$

The denominator

$$D(x) = 2x^{2} - x - 3$$

$$= 2x^{2} - 3x + 2x - 3$$

$$= x(2x - 3) + 1(2x - 3)$$

$$= (x + 1)(2x - 3)$$

Let, $\frac{-1}{2x^2-x-3} = \frac{-1}{(x+1)(2x-3)} = \frac{A}{x+1} + \frac{B}{2x-3}$

Multiplying both sides by (x + 1) (2x - 3), We get -1 = A (2x - 3) + B(x + 1).....(i) -1 = 2Ax - 3A + Bx + B

$$-1 = 2Ax + Bx - 3A + B$$

 $0x - 1 = (2A + B)x - 3A + B$

Equating coefficients of x and constants on both sides, We get

$$2A + B = 0...(i)$$
 $-3A + B = -1...(ii)$

Subtracting (ii) from (i),

$$(2A + B) - (-3A + B) = 0 - (-1)$$

 $2A + B + 3A - B = 1$

$$5A = 1 \Rightarrow A = \frac{1}{5}$$

Putting the value of A in equation (ii)

$$-3\left(\frac{1}{5}\right) + B = -1$$

$$\left(\frac{-3}{5}\right) + B = -1$$

$$B = -1 + \frac{3}{5}$$

$$B = \frac{-5 + 3}{5} \implies B = \frac{-2}{5}$$
Thus,
$$\frac{1}{3 + x - 2x^2} = \frac{1}{5(x+1)} - \frac{2}{5(2x-3)}$$

Note: General method applicable to resolve all rational fractions of the form $\frac{N(x)}{D(x)}$

is as follows:

- (i) The numerator N(x) must be of lower degree than the denominator D(x)
- (ii) If degree of N(x) is greater than the degree of D(x), then division is used and the remainder fraction R(x) can be broken into partial fractions.
- (iii) Make substitution of constants accordingly.
- (iv) Multiply both the sides by L.C.M.
- (v) Arrange the terms on both sides in descending order.
- (vi) Equate the coefficients of like powers of x on both sides, we get as many as equations as there are constants in assumption.
- (vii) Solving these equations, we can find the values of constants.

EXERCISE 4.1

Resolve into partial fractions.

Q.1
$$\frac{7x-9}{(x+1)(x-3)}$$

Solution:
$$\frac{7x-9}{(x+1)(x-3)}$$

Let
$$\frac{7x-9}{(x+1)(x-3)} = \frac{A}{x+1} + \frac{B}{x-3}$$
.....(i)

Multiplying equation (i) by (x + 1)(x - 3)

$$7x - 9 = A(x - 3) + B(x + 1)$$
 (ii)

As equation (ii) is an identity which is true for all values of x.

Put
$$x - 3 = 0$$
 i.e $x = 3$ and

Put
$$x + 1 = 0$$
 i.e $x = -1$

Putting x = 3 and x = -1 in (ii) we get

For
$$x = 3$$
 For $x = -1$
 $7(3)-9 = +B(3+1)$ $7(-1)-9 = A(-1-3)$
 $21-9 = 4B$ $-7-9 = -4A$
 $12 = 4B$ $-16 = -4A$
 $\Rightarrow B=3$ $A=4$

Putting the value of A and B in equation (i)

We get the required partial fractions as.

$$\frac{4}{x+1} + \frac{3}{x-3}$$

Thus
$$\frac{7x-9}{(x+1)(x-3)} = \frac{4}{x+1} + \frac{3}{x-3}$$

$$Q.2 \qquad \frac{x-11}{(x-4)(x+3)}$$

Solution:
$$\frac{x-11}{(x-4)(x+3)}$$

Let
$$\frac{x-11}{(x-4)(x+3)} = \frac{A}{x-4} + \frac{B}{x+3}$$
....(i)

Multiplying by (x-4)(x+3) on both sides, we get x-11 = A(x+3) + B(x-4)... (ii)

As equation (ii) is an identity which is true for all value of x.

Putting
$$x + 3 = 0$$
 i.e $x = -3$
and $x - 4 = 0$ i.e $x = 4$ in (ii) we get
For $x = -3$ | For $x = 4$
 $-3 - 11 = B(-3 - 4) | 4 - 11 = A(4 + 3)$
 $-14 = -7B$ | $-7 = 7A$
 $\Rightarrow B = 2$ | $\Rightarrow A = -1$

Hence the required partial fractions are

$$\frac{x-11}{(x-4)(x+3)} = \frac{-1}{x-4} + \frac{2}{x+3}$$

Q.3
$$\frac{3x-1}{x^2-1}$$

Solution: $\frac{3x-1}{x^2-1}$

$$\frac{3x-1}{x^2-1} = \frac{3x-1}{(x-1)(x+1)}$$

Let
$$\frac{3x-1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1} \dots (i)$$

Multiplying both sides by (x-1)(x+1), we get

$$3x - 1 = A(x + 1) + B(x-1)$$
(ii)

As equation (ii) is an identity which is true for all values of x.

Let
$$x + 1 = 0$$
 i.e $x = -1$ and $x - 1 = 0$ i.e $x = 1$

Putting x = -1 and x = 1 in (ii) We get

For
$$x = 1$$

$$3(1) - 1 = A (1 + 1)$$

$$3 - 1 = 2A$$

$$2 = 2A$$

$$\Rightarrow A = 1$$
For $x = -1$

$$3(-1) - 1 = B (-1 - 1)$$

$$-3 - 1 = -2B$$

$$-4 = -2B$$

$$\Rightarrow B = 2$$

Hence the required partial fractions are

$$\frac{3x-1}{(x-1)(x+1)} = \frac{1}{x-1} + \frac{2}{x+1}$$

Q.4
$$\frac{x-5}{x^2+2x-3}$$

Solution:
$$\frac{x-5}{x^2+2x-3} = \frac{x-5}{x^2+3x-x-3} = \frac{x-5}{x^2+3x-x-3} = \frac{x-5}{x(x+3)-1(x+3)} = \frac{x-5}{(x-1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+3} \dots (i)$$

Multiplying both sides by
$$(x-1)(x+3)$$
, we get $x - 5 = A(x + 3) + B(x - 1)...$ (ii)

As equation (ii) is an identity which is true for all values of x.

Let
$$x+3 = 0 \Rightarrow x = -3$$

and $x-1 = 0 \Rightarrow x = 1$

Putting x = -3 and x=1 in equation (ii) we get

For
$$x = -3$$

$$-3 - 5 = +B (-3-1)$$

$$-8 = -4B$$

$$B = \frac{-8}{-4}$$

$$B = 2$$
For $x = 1$

$$1 - 5 = A (1 + 3)$$

$$-4 = 4A$$

$$A = \frac{-4}{4}$$

$$A = -1$$

Hence the required partial fractions are

$$\frac{x-5}{x^2+2x-3} = \frac{-1}{x-1} + \frac{2}{x+3}$$
Q.5
$$\frac{3x+3}{(x-1)(x+2)}$$

$$Q.5 \qquad \overline{(x-1)(x+2)}$$

Solution:
$$\frac{3x+3}{(x-1)(x+2)}$$

Let
$$\frac{3x+3}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$$
....(i)

Multiplying both sides by (x-1)(x+2), we get 3x + 3 = A(x + 2) + B(x - 1)....(ii) As equation (ii) is an identity which is true for all values of x.

Let
$$x-1=0$$
 i.e $x = 1$
and $x + 2 = 0$ i.e $x = -2$

Putting x = 1 and x = -2 in equation (ii) we get

For
$$x = 1$$
 $3(1) + 3 = A(1 + 2)$
 $3 + 3 = 3A$
 $6 = 3A$
 $A = \frac{6}{3}$

$$A = \frac{6}{3}$$
For $x = -2$
 $3(-2) + 3 = B(-2 - 1)$
 $-6 + 3 = -3B$

$$-3 = -3B$$

$$B = \frac{-3}{-3}$$

$$\Rightarrow \boxed{A = 2}$$

$$\Rightarrow \boxed{B = 1}$$

Hence the required partial fractions are

$$\frac{3x+3}{(x-1)(x+2)} = \frac{2}{x-1} + \frac{1}{x+2}$$

Q.6
$$\frac{7x-25}{(x-4)(x-3)}$$

Solution:
$$\frac{7x-25}{(x-4)(x-3)}$$

Let
$$\frac{7x-25}{(x-4)(x-3)} = \frac{A}{x-4} + \frac{B}{x-3}$$

Multiplying both sides by (x-4)(x-3), we get

$$7x - 25 = A(x - 3) + B(x - 4)....(ii)$$

As equation (ii) is an identity which is true for all values of x.

Let x - 3 = 0 i.e x = 3and x - 4 = 0 i.e x = 4

Putting x = 3 and x = 4 in equation (ii) we get

For x = 3

$$7(3) - 25 = B(3 - 4)$$
 For x = 4
 $7(4) - 25 = A(4 - 3)$
 $21 - 25 = -B$ $28 - 25 = 1A$
 $-4 = -B$ $3 = A$
 $\Rightarrow B = 4$ $\Rightarrow A = 3$

Hence the required partial fractions are

$$\frac{7x-25}{(x-4)(x-3)} = \frac{3}{x-4} + \frac{4}{x-3}$$

Q.7
$$\frac{x^2+2x+1}{(x-2)(x+3)}$$

Solution: $\frac{x^2 + 2x + 1}{(x-2)(x+3)}$ is an improper

fraction. First we resolve it into proper fraction.

By long division we get

$$x^{2} + x - 6\sqrt{x^{2} + 2x + 1}$$

$$\pm x^{2} \pm x + 6$$

$$x + 7$$

We have
$$\frac{x^2 + 2x + 1}{x^2 + x - 6} = 1 + \frac{x + 7}{x^2 + x - 6}$$
Let
$$\frac{x + 7}{(x - 2)(x + 3)} = \frac{A}{x - 2} + \frac{B}{x + 3} \dots (i)$$

Multiplying both sides by (x-2)(x+3), we get x + 7 = A(x+3) + B(x-2).....(ii)

As equation (ii) is an identity which is true for all values of x.

Let
$$x + 3 = 0$$
 i.e $x = -3$
and $x - 2 = 0$ i.e $x = 2$

Putting x = -3 and x = 2 in equation (ii) we get

For
$$x = -3$$

$$-3 + 7 = B(-3 - 2)$$

$$4 = -5B$$

$$\Rightarrow B = -\frac{4}{5}$$
For $x = 2$

$$2 + 7 = A(2 + 3)$$

$$9 = 5A$$

$$\Rightarrow A = \frac{9}{5}$$

Hence the required partial fractions are

$$\frac{x^2 + 2x + 1}{(x-2)(x+3)} = 1 + \frac{9}{5(x-2)} - \frac{4}{5(x+3)}$$

$$Q.8 \qquad \frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1}$$

Solution: $\frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1}$ is an improper fraction.

First we resolve it into proper fraction.

$$3 x^{2} - 2 x - 1 \sqrt{6 x^{3} + 5 x^{2} - 7} \\
\pm 6 x^{3} + 4 x^{2} + 2 x \\
\hline
9 x^{2} + 2 x - 7 \\
\pm 9 x^{2} + 6 x + 3 \\
\hline
8 x - 4$$

$$\frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1} = (2x + 3) + \frac{8x - 4}{(3x + 1)(x - 1)}$$

Now, Let
$$\frac{8x-4}{(3x+1)(x-1)} = \frac{A}{3x+1} + \frac{B}{x-1}$$

.....(i)

Multiplying both sides by (3x+1)(x-1), we get

$$8x - 4 = A(x - 1) + B(3x + 1)....(ii)$$

As equation (ii) is an identity which is true for all values of x.

Let
$$x - 1 = 0$$
 i.e $x = 1$

and
$$3x + 1 = 0$$
 i.e $x = -\frac{1}{3}$

Putting x = 1 and $x = \frac{-1}{3}$ in equation (ii) we get

For
$$x = 1$$

$$8(1) - 4 = B[3(1) + 1]$$

$$-4 = 4B$$

$$4 = 4B$$

$$3 - 4 = A(-1 - 3)$$

$$-8 - 4 = A(-1 - 3)$$

$$3 - 4 = A(-1 - 3)$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$3 - 12$$

$$4 - 12$$

$$3 - 12$$

$$3 - 12$$

$$4 - 12$$

$$3 - 12$$

$$4 - 12$$

$$3 - 12$$

$$4 - 12$$

$$4 - 12$$

$$4 - 12$$

$$5 - 12$$

$$5 - 12$$

$$5 - 12$$

$$5 - 12$$

$$7 - 12$$

$$7 - 12$$

$$7 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8 - 12$$

$$8$$

Hence the required partial functions are

$$\frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1} = 2x + 3 + \frac{5}{3x + 1} + \frac{1}{x - 1}$$

Rule II:

Resolution of a fraction when D(x) consists of repeated linear factors:

If a linear factor (ax + b) occurs n times as a factor of D(x), then there are n partial fractions of the form.

$$\frac{A_1}{(ax+b)} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_n}{(ax+b)^n}, \text{ where}$$

 A_1, A_2, \ldots, A_n are constants and $n \ge 2$ is a positive integer.

$$\therefore \frac{N(x)}{D(x)} = \frac{A_1}{(ax+b)} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_n}{(ax+b)^n}$$

Example:

Resolve
$$\frac{1}{(x-1)^2(x-2)}$$
 into partial

fractions.

Solution: Let,

$$\frac{1}{(x-1)^{2}(x-2)} = \frac{A}{x-1} + \frac{B}{(x-1)^{2}} + \frac{C}{x-2}$$

Multiplying both sides by $(x-1)^2$ (x-2), we get

$$1=A(x-1)(x-2) + B(x-2)+C(x-1)^2$$

$$A(x^2-3x+2) + B(x-2) + C(x^2-2x+1) = 1....(i)$$

Since (i) is an identity and is true for all values of x

Put x - 1 = 0 or x = 1 in (i), we get

$$B(1-2) = 1$$

$$\Rightarrow$$
 -B = 1 or $\boxed{B = -1}$

Put x - 2 = 0 or x = 2 in (i), we get

$$C(2-1)^2 = 1$$

$$C(1) = 1 \Rightarrow C = 1$$

Equating coefficients of x2on both the sides of (i)

$$A + C = 0$$

$$\Rightarrow$$
 A = -C

$$A = -(1) \implies \boxed{A = -1}$$

Hence required partial fractions are

$$\frac{-1}{x-1} - \frac{1}{(x-1)^2} + \frac{1}{(x-2)}$$

Thus,
$$\frac{1}{(x-1)^2(x-2)} = \frac{1}{x-2} - \frac{1}{(x-1)} - \frac{1}{(x-1)^2}$$

EXERCISE 4.2

Resolve into partial fractions:

Q.1
$$\frac{x^2-3x+1}{(x-1)^2(x-2)}$$

Solution:

Let
$$\frac{x^2 - 3x + 1}{(x - 1)^2 (x - 2)} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{x - 2}$$
...(i)

Multiplying both sides by $(x-1)^2(x-2)$, we get $x^2-3x+1=A(x-1)(x-2)+B(x-2)+C(x-1)^2$..(ii)

$$x^2-3x+1 = A(x^2-3x+2)+B(x-2)+C(x^2-2x+1)$$

Putting x - 1 = 0 i.e x = 1 in (ii) we get

$$(1)^2 - 3(1) + 1 = (1-2)$$

 $1 - 3 + 1 = B(-1)$

$$-1 = -B$$

$$\Rightarrow$$
 B = 1

Putting x - 2 = 0 i.e x = 2 in (ii) we get

$$(2)^2 - 3(2) + 1 = C(2 - 1)^2$$

 $4 - 6 + 1 = C$

$$-1 = C$$

Equating the coefficient of x^2 in (ii) we get

$$1=A+B$$

$$1 = A - 1$$

$$\Rightarrow A = 1 + \lambda A = 2$$

Hence the required partial fractions are

$$\frac{x^2 - 3x + 1}{(x - 1)^2(x - 2)} = \frac{2}{x - 1} + \frac{1}{(x - 1)^2} - \frac{1}{x - 2}$$

Q.2
$$\frac{x^2 + 7x + 11}{(x+2)^2(x+3)}$$

Solution:

Let
$$\frac{x^2+7x+11}{(x+2)^2(x+3)} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x+3}$$
...(i)

Multiplying both sides by $(x+2)^2 (x + 3)$

$$\Rightarrow$$
 x²+7x+11=A(x+2)(x+3)+B(x+3)+C(x+2)²

$$x^2+7x+11=A(x^2+5x+6)+B(x+3)+C(x^2+4x+4)..(ii)$$

Putting x + 2 = 0 i.e x = -2 in (ii) we get

$$(-2)^2 + 7(-2) + 11 = B(-2+3)$$

$$4 - 14 + 11 = B$$

$$\Rightarrow$$
 $B = 1$

Putting x+3 = 0 i.e x = -3 in (ii) we get

$$(-3)^{2} + 7(-3) + 11 = C(-3 + 2)^{2}$$

$$9 - 21 + 11 = C(-1)^{2}$$

$$20 - 21 = C(1)$$

$$-1 = C \implies C = -1$$

Equating coefficient of x2 in (ii) we get

$$A + C = 1$$

$$A = 1 = 1$$

$$A = 1 + 1$$

$$A = 2$$

Hence the required partial fractions are:

$$\frac{x^2 + 7x + 11}{(x+2)^2(x+3)} = \frac{2}{x+2} + \frac{1}{(x+2)^2} - \frac{1}{x+3}$$

$$Q.3 \qquad \frac{9}{(x-1)(x+2)^2} \qquad \text{(3)}$$

Solution:

Let
$$\frac{9}{(x-1)(x+2)^2} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$$
.... (i)

Multiplying both sides by $(x - 1) (x + 2)^2$, we get $9 = A (x + 2)^2 + B(x - 1) (x + 2) + C (x - 1)..(ii)$ Putting x - 1 = 0 i.e x = 1 in (ii) we get $9 = A (1 + 2)^2$

$$9 = A(3)^2$$

$$9 = 9A$$

$$\Rightarrow A = 1$$

Putting x + 2 = 0 i.e x = -2 in (ii) we get 9 = C(-2-1)

$$9 = -3C$$

$$C = -3$$

Equating the coefficient of x^2 in (ii) we get

$$A + B = 0$$

$$B = -A$$

$$B = -1$$

Hence the partial fractions are

$$\frac{9}{(x-1)(x+2)^2} = \frac{1}{x-1} - \frac{1}{x+2} - \frac{3}{(x+2)^2}$$

Q.4
$$\frac{x^4+1}{x^2(x-1)}$$

Solution: $\frac{x^4+1}{x^2(x-1)} = \frac{x^4+1}{x^3-x^2}$ is an improper

fraction. First we resolve it into proper fraction.

$$x^{3}-x^{2}) x^{4}+1$$

$$+ x^{3} + 1$$

$$+ x^{3} + 1$$

$$+ x^{3} + x^{2}$$

$$x^{2}+1$$

$$\frac{x^4+1}{x^2(x-1)} = (x+1) + \frac{x^2+1}{x^2(x-1)} \dots (i)$$

Let
$$\frac{x^2+1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}$$
 (ii)

Multiplying both sides by $x^2(x-1)$ we get $x^2+1=A(x)(x-1)+B(x-1)+Cx^2.....(iii)$

Putting x = 0 in (iii) we get

$$0 + 1 = B(0 - 1)$$

 $1 = -B$

$$\Rightarrow$$
 $B = -1$

Putting x - 1 = 0 i.e x = 1 in (iii) we get $(1)^2 + 1 = C(1)^2$ 1 + 1 = C(1)

$$\Rightarrow$$
 $C=2$

Equating the coefficient of x^2 in (iii) we get

$$A+C=1$$

2 = C

$$A + 2 = 1$$

$$A = 1 - 2$$

$$\Rightarrow$$
 $A = -1$

Putting the value of A, B and C in equation(ii) Thus required partial fractions are

$$\frac{x^4+1}{x^2(x-1)} = (x+1) - \frac{1}{x} - \frac{1}{x^2} + \frac{2}{x-1}$$

Q.5
$$\frac{7x+4}{(3x+2)(x+1)^2}$$

Solution:
$$\frac{7x+4}{(3x+2)(x+1)^2}$$

Let
$$\frac{7x+4}{(3x+2)(x+1)^2} = \frac{A}{3x+2} + \frac{B}{x+1} + \frac{C}{(x+1)^2} \dots (i)$$

Multiplying both sides by $(3x + 2)(x + 1)^2$ we get $7x+4 = A(x+1)^2 + B(3x+2)(x+1) + C(3x+2)...$ (ii)

Putting
$$3x + 2 = 0$$
 i.e $x = \frac{-2}{3}$ in (ii) we get

$$7\left(\frac{-2}{3}\right) + 4 = A\left(\frac{-2}{3} + 1\right)^{2}$$

$$\frac{-14}{3} + 4 = A\left(\frac{-2 + 3}{3}\right)^{2}$$

$$\frac{-14 + 12}{3} = A\left(\frac{1}{3}\right)^{2}$$

$$\frac{-2}{3} = \frac{1}{9}A$$

$$-18 = 3A$$

$$A = \frac{-18}{3}$$

$$A = -6$$

Putting x + 1 = 0 i.e x = -1 in (ii) we get 7(-1) + 4 = C(3(-1)+2) -7 + 4 = -C $\Rightarrow -3 = -C$

$$\Rightarrow \qquad -3 = -3$$

$$\Rightarrow \qquad \boxed{C=3}$$

Equating the coefficient of x^2 we get

$$A + 3B = 0$$

$$-6 + 3B = 0$$

$$3B = 6$$

$$B = \frac{6}{3} \implies \boxed{B=2}$$

Putting the value of A, B and C in equation (i) we get required partial fractions.

$$\frac{7x+4}{(3x+2)(x+1)^2} = \frac{-6}{3x+2} + \frac{2}{x+1} + \frac{3}{(x+1)^2}$$

Q.6
$$\frac{1}{(x-1)^2(x+1)}$$

Solution:
$$\frac{1}{(x-1)^2(x+1)}$$

Let
$$\frac{1}{(x-1)^2(x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$$
....(i)

Multiplying both sides by $(x - 1)^2 (x + 1)$ we get $1 = A (x - 1) (x + 1) + B(x + 1) + C (x - 1)^2...(ii)$ Putting x - 1 = 0 i.e x = 1 in (ii) we get 1 = B (1 + 1)

$$1 = 2B \implies \boxed{B = \frac{1}{2}}$$

Putting x + 1 = 0 i.e x = -1 in (ii) we get

$$1 = C (-1-1)^{2}$$

$$1 = C (-2)^{2}$$

$$1 = 4C \Rightarrow C = \frac{1}{4}$$

Equating the coefficient of x^2 in (ii) we get

$$A + C = 0$$

$$A = -C$$

$$A = -\left(\frac{i}{4}\right) \Rightarrow A = \frac{-1}{4}$$

Putting the value of A, B and C in equation (i) we get required partial fractions.

$$\frac{1}{(x-1)^2(x+1)} = \frac{-1}{4(x-1)} + \frac{1}{2(x-1)^2} + \frac{1}{4(x+1)}$$

Q.7
$$\frac{3x^2 + 15x + 16}{(x+2)^2}$$

Solution:
$$\frac{3x^2 + 15x + 16}{(x+2)^2} = \frac{3x^2 + 15x + 16}{x^2 + 4x + 4}$$

The given fraction is improper fraction. First we resolve it into proper fraction.

By long division,

$$x^{2} + 4x + 4\sqrt{3}x^{2} + 15x + 16$$

$$\pm 3x^{2} \pm 12x \pm 12$$

$$3x + 4$$

$$\frac{3x^2 + 15x + 16}{(x+2)^2} = 3 + \frac{3x+4}{x^2 + 4x + 4} \dots (i)$$

Let
$$\frac{3x+4}{(x+2)^2} = \frac{A}{x+2} + \frac{B}{(x+2)^2}$$
.....(ii)

Multiplying both sides by $(x+2)^2$ we get

$$3x + 4 = A(x + 2) + B.....(iii)$$

Putting x + 2 = 0 i.e x = -2 in (iii) we get

$$3(-2) + 4 = B$$

 $-6 + 4 = B$

$$B = -2$$

Equating the coefficient of 'x' we get

$$3 = A$$

$$A = 3$$

Putting the value of A and B in equation (ii) and using equation (i) we get required partial fractions.

$$\frac{3x^2 + 15x + 16}{(x+2)^2} = 3 + \frac{3}{x+2} - \frac{2}{(x+2)^2}$$
Q.8
$$\frac{1}{(x^2-1)(x+1)}$$

Solution:
$$\frac{1}{(x^2-1)(x+1)} = \frac{1}{(x-1)(x+1)(x+1)}$$

$$= \frac{1}{(x-1)(x+1)^2}$$

$$= \frac{1}{(x-1)(x+1)^2} = \frac{A}{(x-1)(x+1)^2} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^2} \dots (i)$$

Multiplying both sides by $(x-1)(x+1)^2$ we get $1 = A(x+1)^2 + B(x+1)(x-1) + C(x-1)$ (ii)

Putting
$$x - 1 = 0$$
 i.e $x = 1$ in (ii) we get
$$1 = A(1 + 1)^{2}$$

$$1 = A(2)^{2}$$

$$\Rightarrow \qquad \boxed{A = \frac{1}{4}}$$

Putting x + 1 = 0 i.e x = -1 in (ii) we get 1 = C(-1-1)

$$1 = C(-1 - 1)$$

$$1 = -2C$$

$$\Rightarrow$$
 $C = \frac{-1}{2}$

Equating the coefficient of x^2 in equation (ii) we get A + B = 0

$$B = -A$$
$$B = -\left(\frac{1}{4}\right)$$

$$B = -\frac{1}{4}$$

Putting the value of A and B in equation (ii) we get required partial fractions.

$$\frac{1}{(x-1)(x+1)^2} = \frac{1}{4(x-1)} - \frac{1}{4(x+1)} - \frac{1}{2(x+1)^2}$$

Rule III:

Resolution of fraction when D(x) consists of non-repeated irreducible quadratic factors:

If a quadratic factor $(ax^2 + bx + c)$ with $a \neq 0$ occurs once as a factor of D(x), the partial fraction is of the form $\frac{Ax+B}{(ax^2+bx+c)}$, where A

and B are constants to be found.

Example:

Resolve $\frac{11x+3}{(x-3)(x^2+9)}$ into partial fractions.

Solution:

Let,
$$\frac{11x+3}{(x-3)(x^2+9)} = \frac{A}{(x-3)} + \frac{Bx+C}{x^2+9}$$

Multiplying both sides by $(x - 3)(x^2 + 9)$

$$\Rightarrow$$
 11x + 3 = A(x²+9) + (Bx + C) (x - 3)

$$\Rightarrow$$
 11x +3 = A(x² + 9) + B (x² - 3x) + C (x - 3)(i)

Since (i) is an identity, we have on substituting

$$x - 3 = 0 \implies x = 3$$

Put x = 3 in equation (i)

$$33 + 3 = A(9 + 9)$$

$$36 = A (18)$$

$$\Rightarrow$$
 18A = 36

$$\Rightarrow$$
 $A = 2$

Comparing the coefficients of x^2 and x on both the sides of (i), we get

$$A + B = 0$$

$$B = -A$$

$$B = -(2)$$

$$\Rightarrow$$
 $B = -2$

$$-3B + C = 11$$

$$\Rightarrow$$
 $-3(-2) + C = 11$

$$C = 11 - 6$$

$$\Rightarrow$$
 $C=5$

Putting the value of A, B and C, we get required partial fractions.

$$\frac{11x+3}{(x-3)(x^2+9)} = \frac{2}{x-3} + \frac{-2x+5}{x^2+9}$$

EXERCISE 4.3

Resolve into partial fractions.

Q.1
$$\frac{3x-11}{(x+3)(x^2+1)}$$

Solution:
$$\frac{3x-11}{(x+3)(x^2+1)}$$

Let
$$\frac{3x-11}{(x+3)(x^2+1)} = \frac{A}{x+3} + \frac{Bx+C}{x^2+1} \dots (i)$$

Multiplying both sides (x+3) (x^2+1) , we get

$$3x - 11 = A(x^2 + 1) + (Bx + C)(x + 3)...(ii)$$

$$3x - 11 = A(x^2 + 1) + Bx(x + 3) + C(x + 3)...(iii)$$

Putting x + 3 = 0 i.e x = -3 in (ii), we get

$$3 (-3) -11 = A [(-3)^{2} + 1]$$

$$-9 - 11 = A (9 + 1)$$

$$-20 = 10 A$$

$$A = \frac{-20}{10}$$

$$\Rightarrow$$
 $A = -2$

Now equating the coefficients of x^2 and x we get from equation (iii)

$$A + B = 0$$

$$-2 + B = 0$$

$$B = 2$$

$$\Rightarrow B = 2$$

$$C = 3 - 6$$

$$\Rightarrow C = -3$$

Putting the value of A, B and C in equation (i) we get required partial fractions.

$$\frac{3x-11}{(x+3)(x^2+1)} = \frac{-2}{x+3} + \frac{2x-3}{x^2+1}$$

Q.2
$$\frac{3x+7}{(x^2+1)(x+3)}$$

Solution:
$$\frac{3x+7}{(x^2+1)(x+3)}$$

Let
$$\frac{3x+7}{(x^2+1)(x+3)} = \frac{Ax+B}{x^2+1} + \frac{C}{x+3}$$
.....(i)

Multiplying both sides by $(x^2+1)(x+3)$

$$3x + 7 = (Ax + B)(x + 3) + C(x^2+1)$$

$$3x+7 = Ax(x+3) + B(x+3) + C(x^2+1)$$
(ii)

Putting x + 3 = 0 i.e x = -3 in (ii), we get

$$3(-3)+7 = C[(-3)^{2}+1]$$

$$-9+7 = C(9+1)$$

$$-2 = 10 C$$

$$\Rightarrow C = \frac{-2}{10}$$

$$C = \frac{-1}{5}$$

Now equating the coefficients of x^2 and x in equation (iii) we get

$$A + C = 0$$

$$A + \left(\frac{-1}{5}\right) = 0$$

$$A - \frac{1}{5} = 0$$

$$A - \frac{1}{5}$$

$$\frac{3x+7}{(x^2+1)(x+3)} = \frac{x+12}{5(x^2+1)} - \frac{1}{5(x+3)}$$

$$Q.3 \qquad \frac{1}{(x+1)(x^2+1)}$$

Solution:
$$\frac{1}{(x+1)(x^2+1)}$$

Let
$$\frac{1}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}$$
(i)

Multiplying both sides by $(x+1)(x^2+1)$, we get

$$1 = A(x^2 + 1) + (Bx + C)(x + 1)$$

$$1 = A(x^2 + 1) + Bx(x + 1) + C(x + 1)...(ii)$$

Putting x + 1 = 0 i.e x = -1 in (ii), we get

$$1 = A[(-1)^2 + 1]$$

$$1 = A(1+1)$$

$$1 = 2A$$

$$A = \frac{1}{2}$$

Equating the coefficients of x^2 and x in equation (ii) we get

$$A + B = 0$$

$$\frac{1}{2} + B = 0$$

$$\Rightarrow B + C = 0$$

$$-\frac{1}{2} + C = 0$$

$$\Rightarrow C = \frac{1}{2}$$

Putting the value of A, B and C in equation (i) we get required partial fractions.

$$\frac{1}{(x+1)(x^2+1)} = \frac{1}{2(x+1)} - \frac{x-1}{2(1+x^2)}$$

Q.4
$$\frac{9x-7}{(x+3)(x^2+1)}$$

Solution:
$$\frac{9x-7}{(x+3)(x^2+1)}$$

Let
$$\frac{9x-7}{(x+3)(x^2+1)} = \frac{A}{x+3} + \frac{Bx+C}{x^2+1} \dots (i)$$

Multiplying both sides by $(x+3)(x^2+1)$ we get

$$9x - 7 = A(x^2 + 1) + (Bx + C)(x + 3)$$

$$9x - 7 = A(x^2+1) + Bx(x+3) + C(x+3)....$$
 (ii)

Putting x+3=0 i.e x=-3 in (ii), we get

$$9(-3) - 7 = A[(-3)^2 + 1]$$

 $-27 - 7 = A(9+1)$
 $-34 = 10A$

$$\Rightarrow A = \frac{-34}{10} \Rightarrow A = \frac{-17}{5}$$

Equating coefficients of x^2 and x in equation (ii) we get

$$A + B = 0$$

$$\frac{-17}{5} + B = 0$$

$$3B + C = 9$$

$$3\left(\frac{17}{5}\right) + C = 9$$

$$\frac{51}{5} + C = 9$$

$$C = 9 - \frac{51}{5}$$

$$C = \frac{45 - 51}{5}$$

$$\Rightarrow C = \frac{-6}{5}$$

$$\frac{9x-7}{(x+3)(x^2+1)} = \frac{-17}{5(x+3)} + \frac{17x-6}{5(x^2+1)}$$

Q.5
$$\frac{3x+7}{(x+3)(x^2+4)}$$

Solution:
$$\frac{3x+7}{(x+3)(x^2+4)}$$

Let
$$\frac{3x+7}{(x+3)(x^2+4)} = \frac{A}{x+3} + \frac{Bx+C}{x^2+4}$$
... (i)

Multiplying both sides by $(x+3)(x^2+4)$ we get

$$3x + 7 = A(x^2+4) + (Bx+C)(x + 3)$$

$$3x + 7 = A(x^2+4)+Bx(x+3)+C(x+3)...(ii)$$

Putting x + 3 = 0 i.e x = -3 in (ii) we get

$$3(-3)+7 = A((-3)^2 + 4)$$

 $-9+7 = A(9+4)$
 $-2 = 13 A$

$$\Rightarrow \qquad \boxed{A = \frac{-2}{13}}$$

Equating the coefficients of x^2 and x in equation (ii) we get

$$A + B = 0$$

$$\frac{-2}{13} + B = 0$$

$$3B + C = 3$$

$$3\left(\frac{2}{13}\right) + C = 3$$

$$B = \frac{2}{13}$$

$$C = 3 - \frac{6}{13}$$

$$C = \frac{39 - 6}{13}$$

$$C = \frac{33}{13}$$

Putting the value of A, B and C in equation (i) we get required partial fractions.

$$\frac{3x+7}{(x+3)(x^2+4)} = \frac{-2}{13(x+3)} + \frac{2x+33}{13(x^2+4)}$$

Q.6
$$\frac{x^2}{(x+2)(x^2+4)}$$

Solution:
$$\frac{x^2}{(x+2)(x^2+4)}$$

Let
$$\frac{x^2}{(x+2)(x^2+4)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+4}$$
....(i)

Multiplying both sides by $(x+2)(x^2+4)$ we get

$$x^2 = A(x^2 + 4) + (Bx + C)(x + 2)$$

$$x^2 = A(x^2 + 4) + Bx(x+2) + C(x+2)....(ii)$$

Putting x + 2 = 0 i.e x = -2 in (ii) we get

$$(-2)^2 = A [(-2)^2 + 4]$$

$$4 = A (4 + 4)$$

$$4 = 8 A$$

$$\Rightarrow A = \frac{4}{9}$$

$$A = \frac{1}{2}$$

Equating the coefficients of x^2 and x in equation (ii) we get

$$A + B = 1$$

$$\frac{1}{2} + B = 1$$

$$B = 1 - \frac{1}{2}$$

$$2 B + C = 0$$

$$2 \left(\frac{1}{2}\right) + C = 0$$

$$1 + C = 0$$

$$\Rightarrow C = -1$$

$$\frac{x^2}{(x+2)(x^2+4)} = \frac{1}{2(x+2)} + \frac{x-2}{2(x^2+4)}$$

Q.7
$$\frac{1}{x^3+1}$$

Solution:
$$\frac{1}{x^3+1}$$

$$\frac{1}{x^3+1} = \frac{1}{(x+1)(x^2-x+1)}$$

Let
$$\frac{1}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$$
....(i)

Multiplying both sides by $(x+1)(x^2-x+1)$, we get

$$1 = A(x^2 - x + 1) + (Bx + C)(x + 1)$$

$$1 = A(x^2 - x + 1) + Bx(x + 1) + C(x + 1)...(ii)$$

Putting x+1=0 i.e x=-1 in (ii) we get

$$1 = A [(-1)^2 - (-1) + 1]$$

$$1 = A(1+1+1)$$

$$1 = 3 A$$

$$\Rightarrow$$
 $A = \frac{1}{3}$

Comparing the coefficients of x^2 and x in equation (ii) we get

$$A + B = 0$$
 $-A + B + C = 0$ $\frac{1}{3} + B = 0$ $-\frac{1}{3} - \frac{1}{3} + C = 0$

$$\Rightarrow B = \frac{-1}{3} \qquad \frac{-2}{3} + C = 0$$

$$\boxed{B = \frac{-1}{3}} \implies \boxed{C = \frac{2}{3}}$$

Putting the value of A, B and C in equation (i) we get required partial fractions.

$$\frac{1}{(x+1)(x^2-x+1)} = \frac{1}{3(x+1)} - \frac{x-2}{3(x^2-x+1)}$$

Q.8
$$\frac{x^2+1}{x^3+1}$$

Solution:
$$\frac{x^2+1}{x^3+1}$$

$$\frac{x^2+1}{x^3+1} = \frac{x^2+1}{(x+1)(x^2-x+1)}$$

Let
$$\frac{x^2+1}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$$
.....(i)

Multiplying both sides by $(x+1)(x^2-x+1)$, we get

$$x^{2}+1 = A(x^{2}-x+1) + (Bx+C)(x+1)$$

$$x^2 + 1 = A(x^2 - x + 1) + Bx(x + 1) + C(x + 1)...(ii)$$

Putting x + 1 = 0 i.e x = -1 in (ii) we get

$$(-1)^2 + 1 = A[(-1)^2 - (-1) + 1]$$

 $1 + 1 = A(1 + 1 + 1)$

$$2 = 3 A$$

$$\Rightarrow$$
 $A = \frac{2}{3}$

Equating the coefficients of x^2 and x in equation (ii) we get

$$A + B = 1$$

$$-A + B + C = 0$$

$$\frac{2}{3} + B = 1$$

$$\frac{-2}{3} + \frac{1}{3} + C = 0$$

$$B = 1 - \frac{2}{3}$$

$$B = \frac{1}{3}$$

$$\Rightarrow C = \frac{1}{3}$$

$$\frac{x^2+1}{x^3+1} = \frac{2}{3(x+1)} + \frac{x+1}{3(x^2-x+1)}$$

Rule IV:

Resolution of a fraction when D(x) has repeated irreducible quadratic factors:

If a quadratic factor $(ax^2 + bx + c)$ with $a \ne 0$, occurs twice in the denominator, the corresponding partial fractions are

$$\frac{Ax+B}{(ax^2+bx+c)} + \frac{Cx+D}{(ax^2+bx+c)^2}$$

The constants A, B, C and D are found in the usual way.

Example 1:

Resolve $\frac{x^3-2x^2-2}{(x^2+1)^2}$ into partial fractions.

Solution: $\frac{x^3-2x^2-2}{(x^2+1)^2}$ is a proper fraction as

degree of numerator is less than the degree of denominator.

Let,
$$\frac{x^3 - 2x^2 - 2}{(x^2 + 1)^2} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2}$$

Multiplying both the sides by $(x^2+1)^2$, we get

$$x^3 - 2x^2 - 2 = (Ax + B)(x^2+1) + Cx + D$$

$$x^{3}-2x^{2}-2 = A(x^{3}+x)+B(x^{2}+1)+Cx+D...$$
 (i)

Equating the coefficients of x^3 , x^2 , x and constant on both the sides of (i)

Coefficients of x³:

$$A = 1$$

Coefficients of x²:

$$B = -2$$

Coefficients of x:

$$A + C = 0$$

$$C = -A$$

$$\Rightarrow$$
 $C = -1$

$$C=-1$$

Constants:

$$B + D = -2$$

$$D = -2 - B$$

$$D = -2 - (-2)$$

$$D = -2 + 2$$

$$D=0$$

Putting the value of A, B C and D, we get required partial fractions.

Thus
$$\frac{x^3 - 2x^2 - 2}{\left(x^2 + 1\right)^2} = \frac{x - 2}{x^2 + 1} + \frac{-x + 0}{\left(x^2 + 1\right)^2}$$
$$= \frac{x - 2}{x^2 + 1} - \frac{x}{\left(x^2 + 1\right)^2}$$

Example 2:

Resolve $\frac{2x+1}{(x-1)(x^2+1)^2}$ into partial fractions.

Solution: Assume that

$$\frac{2x+1}{(x-1)(x^2+1)^2} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}$$

Multiplying both sides by $(x-1)(x^2+1)^2$

we get

$$2x + 1 = A(x^2+1)^2 + (Bx+C)(x-1)(x^2+1) +$$

$$(Dx + E) (x - 1)....(i)$$

Now we use zeros, method. Put x-1 = 0

or x = 1 in (i), we get

$$2(1) + 1 = [(1)^2 + 1]^2$$

$$3 = A(1+1)^2$$

$$3 = A (2)^2$$

$$3 = 4A$$

$$\Rightarrow A = \frac{3}{4}$$

Now writing terms of (i) in descending order.

$$2x + 1 = A(x^4 + 2x^2 + 1) + Bx(x^3 - x^2 + x - 1) +$$

$$C(x^3-x^2+x-1)+D(x^2-x)+E(x-1)$$

or
$$2x + 1 = A(x^4 + 2x^2 + 1) + B(x^4 - x^3 + x^2 - x) +$$

$$C(x^3-x^2+x-1)+D(x^2-x)+E(x-1)$$

Equating coefficients of x^4 , x^3 , x^2 , and x on both the sides.

Coefficients of x^4 : A + B = 0

$$B = -A$$

$$\Rightarrow \qquad B = \frac{-3}{4}$$

Coefficients of x^3 : -B + C = 0

$$C = B$$

$$\Rightarrow$$
 $C = \frac{-3}{4}$

Coefficients of $x^2 : 2A+B - C+D = 0$

$$2\left(\frac{3}{\cancel{4}_2}\right) + \left(\frac{-3}{4}\right) - \left(\frac{-3}{4}\right) + D = 0$$

$$\left(\frac{3}{2}\right) - \frac{3}{4} + \frac{3}{4} + D = 0$$

$$\Rightarrow$$
 D = $\frac{-3}{2}$

Coefficients of x: -B + C - D + E = 2

$$\frac{3}{4} - \frac{3}{4} + \frac{3}{2} + E = 2$$

$$\Rightarrow \frac{E = 2 - \frac{3}{2} = \frac{4 - 3}{2}}{E = \frac{1}{2}}$$

Thus required partial fraction are

$$\frac{3}{4(x-1)} + \frac{\frac{-3}{4}x - \frac{3}{4}}{x^2 + 1} + \frac{\frac{-3}{2}x + \frac{1}{2}}{(x^2 + 1)^2}$$

$$\therefore \frac{2x+1}{(x-1)(x^2+1)^2} = \frac{3}{4(x-1)} - \frac{3(x+1)}{4(x^2+1)} - \frac{(3x-1)}{2(x^2+1)^2}$$

Equating coefficients of x^4 , x^3 , x^2 , and x on both the sides.

Coefficients of x^4 : A + B = 0

$$B = -A$$

$$\Rightarrow$$
 B = $\frac{-3}{4}$

Coefficients of x^3 : -B + C = 0

$$C = B$$

$$\Rightarrow$$
 $C = \frac{-3}{4}$

Coefficients of x^2 : 2A+B-C+D=0

$$2\left(\frac{3}{4}\right) + \left(\frac{-3}{4}\right) - \left(\frac{-3}{4}\right) + D = 0$$

$$\left(\frac{3}{2}\right) - \frac{3}{4} + \frac{3}{4} + D = 0$$

$$\Rightarrow$$
 D = $\frac{-3}{2}$

Coefficients of x: -B + C - D + E = 2

$$\frac{3}{4} - \frac{3}{4} + \frac{3}{2} + E = 2$$

$$\Rightarrow \frac{E = 2 - \frac{3}{2} = \frac{4 - 3}{2}}{E = \frac{1}{2}}$$

Thus required partial fraction are

$$\frac{3}{4(x-1)} + \frac{\frac{-3}{4}x - \frac{3}{4}}{x^2 + 1} + \frac{\frac{-3}{2}x + \frac{1}{2}}{(x^2 + 1)^2}$$

$$\therefore \frac{2x+1}{(x-1)(x^2+1)^2} = \frac{3}{4(x-1)} - \frac{3(x+1)}{4(x^2+1)} - \frac{(3x-1)}{2(x^2+1)^2}$$

EXERCISE 4.4

Q.1
$$\frac{x^3}{(x^2+4)^2}$$

Solution:
$$\frac{x^3}{(x^2+4)^2}$$

Let
$$\frac{x^3}{(x^2+4)^2} = \frac{Ax+B}{x^2+4} + \frac{Cx+D}{(x^2+4)^2}$$
..... (i)

Multiplying both sides by $(x^2 + 4)^2$, we get

$$x^3 = (Ax + B)(x^2 + 4) + (Cx + D)$$

$$x^3 = Ax(x^2+4) + B(x^2+4) + (Cx+D)$$
(ii)

Equating the coefficients of x^3 , x^2 , x and constants, we get

Coefficients of x^3 : A = 1

Coefficients of x^2 : B = 0

Coefficients of x: 4 A + C = 0

$$4(1) + C = 0$$

$$\Rightarrow$$
 C = -4

Constants: 4B + D = 0

$$4(0)+D = 0$$

$$\Rightarrow$$
 D = 0

Putting the value of A,B,C and D in equation(i) we get required partial fractions.

$$\frac{x^3}{(x^2+4)^2} = \frac{x}{x^2+4} - \frac{4x}{(x^2+4)^2}$$

Q.2
$$\frac{x^4 + 3x^2 + x + 1}{(x+1)(x^2+1)^2}$$

Solution:
$$\frac{x^4 + 3x^2 + x + 1}{(x+1)(x^2+1)^2}$$

Let
$$\frac{x^4 + 3x^2 + x + 1}{(x+1)(x^2+1)^2} = \frac{A}{x+1} + \frac{Bx + C}{x^2+1} + \frac{Dx + E}{(x^2+1)^2}$$
...(i)

Multiplying both sides by $(x+1)(x^2+1)^2$ we get

$$x^4+3x^2+x+1 = A(x^2+1)^2 + (Bx +C)(x+1)(x^2+1)$$

$$+(Dx+E)(x+1)....(ii)$$

$$x^{4} + 3x^{2} + x + 1 = A(x^{4} + 2x^{2} + 1) + Bx(x^{3} + x^{2} + x + 1)$$

$$+C(x^{3} + x^{2} + x + 1) + Dx(x + 1) + E(x + 1)$$

$$x^{4} + 3x^{2} + x + 1 = A(x^{4} + 2x^{2} + 1) + B(x^{4} + x^{3} + x^{2} + x)$$

$$+C(x^{3} + x^{2} + x + 1) + D(x^{2} + x) + E(x + 1).. (iii)$$
Putting $x + 1 = 0$ i.e $x = -1$ in eq.(ii), we get
$$(-1)^{4} + 3(-1)^{2} + (-1) + 1 = A[(-1)^{2} + 1]^{2}$$

$$1 + 3(1) - 1 + 1 = A(1 + 1)^{2}$$

$$4 = 4A$$

$$\Rightarrow A = 1$$

Now equating the coefficients of x^4 , x^3 , x^2 , x and constants, we get from equation (iii)

Coefficients of
$$x^4$$
: $A + B = 1$
 $1 + B = 1$
 $B = 1 - 1$
 $\Rightarrow B = 0$

Coefficients of x^3 : B + C = 0 0 + C = 0 $\Rightarrow C = 0$

Coefficients of x^2 : 2A + B + C + D = 3 2(1) + 0 + 0 + D = 3D = 3 - 2

$$D = 1$$

Coefficients of x: B + C + D + E = 10 + 0 + 1 + E = 1E = 1 - 1 $\Rightarrow E = 0$

Putting the value of A, B, C and D in equation(i) we get required partial fractions.

$$\frac{x^4 + 3x^2 + x + 1}{(x+1)(x^2+1)^2} = \frac{1}{x+1} + \frac{x}{(x^2+1)^2}$$

Q.3
$$\frac{x^2}{(x+1)(x^2+1)^2}$$

Solution: $\frac{x^2}{(x+1)(x^2+1)^2}$

Let
$$\frac{x^2}{(x+1)(x^2+1)^2} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}$$
.. (i)

Multiply both sides by $(x+1)(x^2+1)^2$ we get

$$x^2 = A(x^2+1)^2 + (Bx+C)(x+1)(x^2+1) + (Dx+E)(x+1)....(ii)$$

$$x^{2} = A(x^{4}+2x^{2}+1)+Bx(x^{3}+x^{2}+x+1)$$

$$+C(x^{3}+x^{2}+x+1)+Dx(x+1)+E(x+1)$$

$$x^{2} = A(x^{4}+2x^{2}+1)+B(x^{4}+x^{3}+x^{2}+x)$$

$$+C(x^{3}+x^{2}+x+1)+D(x^{2}+x)+E(x+1)...(iii)$$

Putting x+1=0 i.e x=-1 in equation (ii) we get

$$(-1)^2 = A [(-1)^2 + 1]^2$$

 $1 = A(1+1)^2$
 $1 = 4A \Rightarrow A = \frac{1}{4}$

Now equating the coefficients of x^4 , x^3 , x^2 , x and constants we get from equation (iii)

Coefficients of x^4 : A + B = 0

$$\frac{1}{4} + B = 0 \implies B = -\frac{1}{4}$$

Coefficients of x^3 B + C = 0

$$-\frac{1}{4} + C = 0 \Rightarrow \boxed{C = \frac{1}{4}}$$

Coefficients of x^2 : 2A + B + C + D = 1

$$2\left(\frac{1}{4}\right) - \frac{1}{4} + \frac{1}{4} + D = 1$$

$$\frac{1}{2} + D = 1$$

$$D = 1 - \frac{1}{2}$$

$$D = \frac{1}{2}$$

Coefficients of x: B + C + D + E = 0

$$-\frac{1}{4} + \frac{1}{4} + \frac{1}{2} + E = 0$$

$$\frac{1}{2} + E = 0$$

$$E = -\frac{1}{2}$$

Putting the value of A, B, C, D and E in equation(i) we get required partial fractions.

$$\frac{x^2}{(x+1)(x^2+1)^2} = \frac{1}{4(x+1)} - \frac{x-1}{4(x^2+1)} + \frac{x-1}{2(x^2+1)^2}$$

Q.4
$$\frac{x^2}{(x-1)(x^2+1)^2}$$

Solution:
$$\frac{x^2}{(x-1)(x^2+1)^2}$$

Let
$$\frac{x^2}{(x-1)(x^2+1)^2} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}$$
..(i)

Multiplying both sides by $(x - 1)(x^2 + 1)^2$, we get

$$x^2 = A(x^2 + 1)^2 + (Bx+C)(x-1)(x^2+1) + (Dx +E)(x-1)....(ii)$$

$$x^{2} = A(x^{4}+2x^{2}+1) + Bx(x-1)(x^{2}+1)$$

+ $C(x-1)(x^{2}+1) + Dx(x-1) + E(x-1)$

$$x^2 = A(x^4+2x^2+1) + B(x^4-x^3+x^2-x) + C(x^3-x^2+x-1) + D(x^2-x) + E(x-1)...$$
 (iii)

Putting x - 1 = 0 i.e x = 1 in equation (ii) we get

$$(1)^2 = A[(1)^2+1]^2$$

$$1 = A(1+1)^2$$

$$1 = 4A \Rightarrow \boxed{A = \frac{1}{4}}$$

Now equating the coefficients of x^4 , x^3 , x^2 and x in equation (iii) we get

Coefficients of x^4 : A + B = 0

$$\frac{1}{4} + B = 0$$

$$\Rightarrow B = -\frac{1}{4}$$

Coefficients of $x^3 : -B + C = 0$

$$-\left(-\frac{1}{4}\right) + C = 0$$

$$\Rightarrow C = -\frac{1}{4}$$

Coefficients of $x^2 : 2A + B - C + D = 1$

$$2\left(\frac{1}{4}\right) - \frac{1}{4} - \left(\frac{-1}{4}\right) + D = 1$$

$$\frac{1}{2} - \frac{1}{4} + \frac{1}{4} + D = 1$$

$$D = 1 - \frac{1}{2}$$

$$D = \frac{2-1}{2}$$

$$D = \frac{1}{2}$$

Coefficients of x: -B + C - D + E = 0

$$-\left(-\frac{1}{4}\right) - \frac{1}{4} - \frac{1}{2} + E = 0$$

$$\frac{1}{4} - \frac{1}{4} - \frac{1}{2} + E = 0$$

$$\frac{-1}{2} + E = 0$$

$$E = \frac{1}{2}$$

$$\frac{x^2}{(x-1)(x^2+1)^2} = \frac{1}{4(x-1)} - \frac{x+1}{4(x^2+1)} + \frac{x+1}{2(x^2+1)^2}$$

Q.5
$$\frac{x^4}{(x^2+2)^2}$$

Solution:
$$\frac{x^4}{(x^2+2)^2}$$

$$\frac{x^4}{(x^2+2)^2} = \frac{x^4}{x^4+4x^2+4}$$
 is an improper

fraction. First we resolve it into proper fraction.

$$\frac{x^4}{(x^2+2)^2} = 1 + \frac{-4x^2-4}{(x^2+2)^2}$$
Let
$$\frac{-4x^2-4}{(x^2+2)^2} = \frac{Ax+B}{x^2+2} + \frac{Cx+D}{(x^2+2)^2} \dots (i)$$

Multiplying both sides by $(x^2 + 2)^2$ we get $-4x^2 - 4 = (Ax + B)(x^2 + 2) + (Cx + D)$ $-4x^2 - 4 = A(x^3 + 2x) + B(x^2 + 2) + Cx + D.....(ii)$

Equating the coefficients of x^3 , x^2 , x and constants in equation (ii) we get

Coefficients of x^3 : A = 0

Coefficients of x^2 : B = -4

Coefficients of x: 2A + C = 0

$$2(0) + C = 0$$

$$\Rightarrow C = 0$$

Constants:
$$2B + D = -4$$

 $2(-4) + D = -4$
 $-8 + D = -4$
 $D = 8 - 4$
 $D = 4$

Putting the value of A, B, C and D in equation(i) we get required partial fractions.

$$\frac{x^4}{(x^2+2)^2} = 1 + \frac{-4}{x^2+2} + \frac{4}{(x^2+2)^2}$$
$$\frac{x^4}{(x^2+2)^2} = 1 - \frac{4}{x^2+2} + \frac{4}{(x^2+2)^2}$$

Q.6
$$\frac{x^5}{(x^2+1)^2}$$

Solution:
$$\frac{x^5}{(x^2+1)^2}$$

$$\frac{x^5}{(x^2+1)^2} = \frac{x^5}{x^4+2x^2+1}$$
 is an improper fraction.

First we resolve it into proper fraction.

$$x^{4} + 2x^{2} + 1\sqrt{x^{5}}$$

$$\pm x^{5} \pm 2x^{3} \pm x$$

$$-2x^{3} - x$$

$$\frac{x^5}{(x^2+1)^2} = x + \frac{-2x^3 - x}{(x^2+1)^2}$$

Let
$$\frac{-2x^3-x}{(x^2+1)^2} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2}$$
(i)

Multiplying both sides by $(x^2+1)^2$ we get

$$-2x^3 - x = (Ax + B)(x^2 + 1) + (Cx + D)$$

$$-2x^3-x = A(x^3 + x) + B(x^2 + 1) + Cx + D$$

Equating the coefficients of x^3 , x^2 , x and constants we get

Coefficients of x^3 : A = -2

Coefficients of x^2 : B = 0

Coefficients of x : A + C = -1

$$-2 + C = -1$$

$$C = -1 + 2$$

$$\Rightarrow C = 1$$

Constants: B + D = 0

$$0 + D = 0$$

$$\Rightarrow$$
 D = 0

Hence the required partial fractions are

$$\frac{x^5}{(x^2+1)^2} = x + \frac{-2x}{x^2+1} + \frac{x}{(x^2+1)^2}$$

$$\Rightarrow \frac{x^5}{(x^2+1)^2} = x - \frac{2x}{x^2+1} + \frac{x}{(x^2+1)^2}$$

MISCELLANEOUS EXERCISE - 4

Q. 1 Multiple Choice Questions:

Four possible answers are given for the following questions. Tick (\checkmark) the correct answer.

- 1. $(x+3)^2 = x^2 + 6x + 9$ is
 - (a) a linear equation
 - (b) an equation
 - (c) an identity
 - (d) none of these
- 2. $\frac{2x+1}{(x+1)(x-1)}$ is
 - (a) an improper fraction
 - (b) an equation
 - (c) a proper fraction
 - (d) none of these
- $3. \quad \frac{x^3+1}{(x-1)(x+2)} \text{ is}$
 - (a) a proper fraction
 - (b) an improper fraction
 - (c) an identity
 - (d) a constant term
- 4. A fraction in which the degree of numerator is less than the degree of the denominator is called
 - (a) an equation
 - (b) an improper fraction
 - (c) an identity
 - (d) a proper fraction
- 5. A function of the form $f(x) = \frac{N(x)}{D(x)}$,

with $D(x) \neq 0$, where N(x) and D(x) are polynomials in x is called

- (a) an identity
- (b) an equation
- (c) a fraction
- (d) none of these
- 6. The identity $(5x + 4)^2 = 25x^2 + 40x + 16$ is true for
 - (a) one value of x
 - (b) two values of x
 - (c) all values of x
 - (d) none of these

- 7. A fraction in which the degree of the numerator is greater or equal to the degree of denominator is called
 - (a) a proper fraction
 - (b) an improper fraction
 - (c) an equation
 - (d) algebraic relation
- 8. Partial fractions of $\frac{x-2}{(x-1)(x+2)}$ are

of the form

- (a) $\frac{A}{x-1} + \frac{B}{x+2}$ (b) $\frac{Ax}{x-1} + \frac{B}{x+2}$
- (c) $\frac{A}{x-1} + \frac{Bx+C}{x+2}$ (d) $\frac{Ax+B}{x-1} + \frac{C}{x+2}$
- 9. Partial fractions of $\frac{x+2}{(x+1)(x^2+2)}$

are of the form

- (a) $\frac{A}{x+1} + \frac{B}{x^2+2}$
- (b) $\frac{A}{x+1} + \frac{Bx + C}{x^2 + 2}$
- (c) $\frac{Ax+B}{x+1} + \frac{C}{x^2+2}$
- (d) $\frac{A}{x+1} + \frac{Bx}{x^2+2}$
- 10. Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are

of the form

- (a) $\frac{A}{x+1} + \frac{B}{x-1}$
- (b) $1 + \frac{A}{x+1} + \frac{Bx + C}{x-1}$
- (c) $1 + \frac{A}{x+1} + \frac{B}{x-1}$
- (d) $\frac{Ax+B}{(x+1)} + \frac{C}{x-1}$

ANSWER KEY

1.	С	2.	С	3.	b	4.	d	5.	c
6.	С	7.	b.	8.	a	9.	b	10.	С

Q. 2 Write short answers of the following questions:

(i) Define a rational fraction.

An expression of the form $\frac{N(x)}{D(x)}$ with $D(x) \neq 0$

and N(x) and D(x) are polynomials in x with real coefficients, is called a rational fraction. Every fractional expression can be expressed as a quotient of two polynomials.

(ii) What is a proper fraction?

A rational fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$ is

called a proper fraction if degree of the polynomial N(x) in the numerator is less than the degree of the polynomial D(x) in the denominator.

(iii) What is an improper fraction?

A rational fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$ is

called an improper fraction if degree of the polynomial N(x) is greater or equal to the

degree of the polynomial D(x) e.g $\frac{x^2+1}{x-1}$

(iv) What are partial fractions?

Every proper fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$

can be resolved into an algebraic sum of components fractions. These components fractions of a resultant fraction are called its partial fractions.

(v) How can we make partial fractions

of
$$\frac{x-2}{(x+2)(x+3)}$$
?

Solution: $\frac{x-2}{(x+2)(x+3)}$

Let
$$\frac{x-2}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3}$$
.....(i)

Multiplying both sides by (x+2)(x+3), we get

$$x - 2 = A(x + 3) + B(x + 2)$$
 (ii)

As both sides of the identity are equal for all values of x,

Put $x^* + 2 = 0$ i.e x = -2 in equation (ii), we get

$$-2 - 2 = A (-2+3)$$

$$-4 = A$$

$$\Rightarrow A = -4$$

Now put x+3=0 i.e x= -3 in equation (ii) we get -3 - 2 = B (-3 + 2) -5 = -B $\Rightarrow B = 5$

Putting the value of A and B in equation(i) we get required partial fractions.

$$\frac{x-2}{(x+2)(x+3)} = \frac{-4}{x+2} + \frac{5}{x+3}$$

(vi) Resolve $\frac{1}{x^2-1}$ into partial fractions.

Solution:
$$\frac{1}{x^2-1} = \frac{1}{(x-1)(x+1)}$$

Let
$$\frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$$
(i)

Multiplying both sides By (x - 1)(x + 1), we get

$$1 = A(x + 1) + B(x - 1)$$
(ii)

As both sides of identity are equal for all values of x

Putting x-1=0 i.e x = 1in equation (ii) we get

$$1 = A(1+1)$$

$$1 = 2A$$

$$\Rightarrow$$
 $A = \frac{1}{2}$

Putting x+1 = 0 i.e x = -1 in equation (ii) we get 1 = B(-1, -1)

$$\Rightarrow$$
 $B = -\frac{1}{2}$

$$\frac{1}{x^2-1} = \frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

(vii) Find partial fractions of
$$\frac{3}{(x+1)(x-1)}$$

Solution:
$$\frac{3}{(x+1)(x-1)}$$

Let
$$\frac{3}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$$
....(i)

Multiplying both sides by
$$(x+1)(x-1)$$
, we get $3 = A(x-1) + B(x+1)$(ii)

As both sides of the identity are equal for all values of x.

Put x + 1 = 0 i.e x = -1 put in equation (ii) we get 3 = A(-1-1)

$$3 = -2A$$
 \Rightarrow $A = \frac{-3}{2}$

Now put x - 1 = 0 i.e x = 1 in equation (ii) we get

$$\Rightarrow 3 = B(1+1)$$

$$3 = 2B \Rightarrow B = \frac{3}{2}$$

Putting the value of A and B in equation(i) we get required partial fractions.

$$\frac{3}{(x+1)(x-1)} = \frac{-3}{2(x+1)} + \frac{3}{2(x-1)} = \frac{3}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right)$$

(viii) Resolve
$$\frac{x}{(x-3)^2}$$
 into partial fractions.

Solution:
$$\frac{x}{(x-3)^2}$$

Let
$$\frac{x}{(x-3)^2} = \frac{A}{x-3} + \frac{B}{(x-3)^2}$$
....(i)

Multiplying both sides by $(x-3)^2$, we get

$$x = A(x-3) + B$$
(ii)

As both sides of the identity are equal for all values of x,

Put x - 3 = 0 i.e x = 3 in equation (ii) we get

$$3 = B$$

$$\Rightarrow$$
 $B = 3$

Now comparing the coefficients of x, we have

Putting the value of A and B in equation(i) we get required partial fractions.

$$\frac{x}{(x-3)^2} = \frac{1}{x-3} + \frac{3}{(x-3)^2}$$

How we can make the partial fractions of $\frac{x}{(x+a)(x-a)}$?

Solution:
$$\frac{x}{(x+a)(x-a)}$$

Let
$$\frac{x}{(x+a)(x-a)} = \frac{A}{x+a} + \frac{B}{x-a}$$
(i)

Multiplying both sides by (x + a) (x - a), we get

$$x = A(x - a) + B(x + a)$$
(ii)

As both sides of the identity are equal for all values of x,

Put x + a = 0 i.e x = -a put in equation (ii) we get -a = A(-a-a)-a = -2a A

$$\Rightarrow A = \frac{-a}{-2a}$$

$$\Rightarrow A = \frac{1}{2}$$

$$\Rightarrow$$
 $A = \frac{1}{2}$

Now put x - a = 0 i.e x = a in equation (ii) we get a = B(a + a)

$$a = 2aB$$

$$\Rightarrow$$
 B = $\frac{a}{2a}$

$$\Rightarrow B = \frac{a}{2a}$$

$$\Rightarrow B = \frac{1}{2}$$

Putting the value of A and B in equation(i) we get required partial fractions.

$$\frac{x}{(x+a)(x-a)} = \frac{1}{2(x+a)} + \frac{1}{2(x-a)}$$
$$= \frac{1}{2} \left(\frac{1}{x+a} + \frac{1}{x-a} \right)$$

Whether $(x+3)^2 = x^2 + 6x + 9$ is an (\mathbf{x}) identity?

Answer:

Yes $(x+3)^2 = x^2 + 6x + 9$ is an identity because it is true for all the values of x.