

# PARALLELOGRAMS AND TRIANGLES

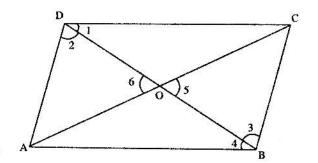
## Theorem

In a parallelogram

- (i) Opposite sides are congruent.
- (ii) Opposite angles are congruent.
- (iii) The diagonals bisect each other.

### Given

 $\frac{\text{In}}{\overline{AB}} \frac{\text{a}}{\overline{DC}}, \frac{\text{a}}{\overline{BC}} \frac{\text{quadrilateral}}{\text{and the diagonals}} \frac{\overline{ABCD}}{\overline{AC}}, \frac{\overline{BD}}{\overline{BD}}$ meet each other at point O.



## To Prove

- (i)  $\overline{AB} \cong \overline{DC}. \overline{AD} \cong \overline{BC}$
- (ii) ∠ADC≅∠ABC,∠BAD≅∠BCD
- (iii)  $\overrightarrow{OA} \cong \overrightarrow{OC}. \overrightarrow{OB} \cong \overrightarrow{OD}$

## Construction

In the figure as shown, we label the angles as  $\angle 1$ ,  $\angle 2$ ,  $\angle 3$ ,  $\angle 4$ ,  $\angle 5$  and  $\angle 6$ .

|      | Statements                                                                                     | Reasons                                       |
|------|------------------------------------------------------------------------------------------------|-----------------------------------------------|
| (i)  | In $\triangle ABD \leftrightarrow \triangle CDB$                                               |                                               |
|      | ∠4 ≅ ∠1                                                                                        | Alternate angles                              |
|      | $\overline{\mathrm{BD}}\cong\overline{\mathrm{BD}}$                                            | Common                                        |
|      | ∠2 ≅ ∠3                                                                                        | Alternate angles                              |
|      | $\Delta ABD \cong \Delta CDB$                                                                  | A.S.A. ≅ A.S.A.                               |
| So,  | $\overrightarrow{AB} \cong \overrightarrow{DC}. \overrightarrow{AD} \cong \overrightarrow{BC}$ | (corresponding sides of congruent triangles)  |
| and  | $\angle A \cong \angle C$                                                                      | (corresponding angles of congruent triangles) |
| (ii) | Since                                                                                          |                                               |
|      | $\angle 1 \cong \angle 4$ (a)                                                                  | Proved                                        |
| and  | $\angle 2 \cong \angle 3$ (b)                                                                  | Proved                                        |
| ••   | $m\angle 1 + m\angle 2 = m\angle 4 + m\angle 3$                                                | From (a) and (b)                              |
| or   | $m\angle ADC = m\angle ABC$                                                                    |                                               |
| or   | ∠ADC≅ ∠ABC                                                                                     |                                               |

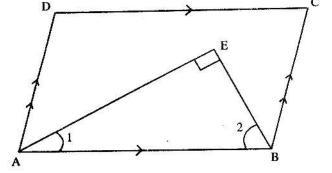
| and                                                                 | ∠BAD = ∠BCD                                                                | Proved in (i)   |       |    |           |
|---------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|-------|----|-----------|
| (iii)                                                               | In $\triangle BOC \leftrightarrow \triangle DOA$                           |                 |       |    |           |
|                                                                     | BC≅ AD                                                                     | Proved in (i)   |       |    |           |
|                                                                     |                                                                            | Vertical angles |       |    |           |
|                                                                     | <b>∠5 ≅ ∠6</b>                                                             | Proved          |       |    |           |
|                                                                     | ∠3 ≅ ∠2                                                                    |                 |       |    |           |
|                                                                     | $\Delta BOC \cong \Delta DOA$                                              | A.A.S≅ A.A.S    |       |    |           |
| Henc                                                                | $e \ \overline{OC} \cong \overline{OA}, \overline{OB} \cong \overline{OD}$ | Corresponding   | sides | of | congruent |
| 5V. 18V. 18V |                                                                            | triangles)      |       |    |           |

# Corollary

Each diagonal of a parallelogram bisects it into two congruent triangles.

## Example

The bisectors of two angles on the same side of a parallelogram cut each other at right angles.



## Given

A parallelogram ABCD, in which

$$\overline{AB} \parallel \overline{DC}, \overline{AD} \parallel \overline{BC}$$

The bisectors of  $\angle A$  and  $\angle B$  cut each other at E.

# To prove

$$m\angle E = 90^{\circ}$$

# Construction

Name the angles  $\angle 1$  and  $\angle 2$  as shown in the figure.

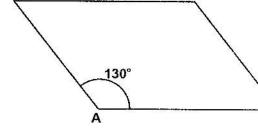
| Statements                                                              | Reasons                                                                                                                                                           |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $m \angle 1 + m \angle 2$ $= \frac{1}{2} (m \angle BAD + m \angle ABC)$ | $\begin{cases} m \angle 1 = \frac{1}{2} m \angle BAD, \\ m \angle 2 = \frac{1}{2} mABC \end{cases}$                                                               |
| $=\frac{1}{2}(180^{\circ})$ =90°                                        | $\begin{cases} Int.angles on the same side of \overline{AB} \\ Which cuts    segments \overline{AD} \text{ and } \overline{BC} \\ are supplementary. \end{cases}$ |
| Hence in ΔABE, m∠E = 90°                                                | $m\angle 1+m\angle 2=90^{\circ} \text{ (proved)}$                                                                                                                 |

# **EXERCISE 11.1**

(1) One angle of a parallelogram is 130°. Find the measures of its remaining angles.

## Given

ABCD is a parallelogram that  $m\angle A = 130^{\circ}$ 



C

## To Prove

(Required) To find the measures of  $\angle B$ ,  $\angle C$ ,  $\angle D$ 

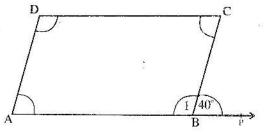
### Proof

| Statements                                                                     | Reasons                           |
|--------------------------------------------------------------------------------|-----------------------------------|
| $m\angle C = m\angle A$                                                        | Opposite angles of parallelogram. |
| $m\angle C = 130^{\circ}$                                                      | Given, $m\angle A = 130^{\circ}$  |
| $m\angle B + m\angle A = 180^{\circ}$                                          | AD BC and AB is transversal.      |
|                                                                                | ∴ sum of interior angles.         |
| $m\angle B + 130^{\circ} = 180^{\circ}$                                        | Given $m\angle A = 130^{\circ}$   |
| $m\angle B = 180^{\circ} - 130^{\circ}$                                        |                                   |
| m∠B = 50°                                                                      |                                   |
| m∠D = m∠B                                                                      | Opp. angles                       |
| $m\angle D = 50^{\circ}$                                                       | As $m\angle B = 50^{\circ}$       |
| $\therefore  \text{m} \angle B = 50^{\circ}, \text{m} \angle C = 130^{\circ},$ |                                   |
| $m\angle D = 50^{\circ}$                                                       |                                   |

(2) One exterior angle formed on producing one side of a parallelogram is 40°. Find the measures of its interior angles.

# Given

ABCD is a parallelogram, side AB has been produced to p to form exterior angle  $m\angle CBP = 40^{\circ}$  and name the interior angles as  $\angle 1$ ,  $\angle C$ ,  $\angle D$ ,  $\angle A$ .



# Required

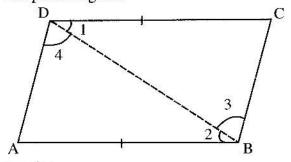
To find the degree measures of  $\angle 1$ ,  $\angle C$ ,  $\angle D$ ,  $\angle A$ 

| * Statements             |   |      | W.C. was a second of the secon | R   | easons    |
|--------------------------|---|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| m∠1 + m∠CBP              | = | 180° | Supp.angles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *** |           |
| $m\angle 1 + 40^{\circ}$ | = | 180° | m∠CBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =   | 40° given |

|      | m∠1                             | $= 180^{\circ} - 40^{\circ}$                |                                                                             |
|------|---------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|
|      | <b>m∠</b> 1                     | $= 140^{\circ}$ (i)                         | 0 2000                                                                      |
|      | m∠D                             | = m∠1                                       | Opp.angles of llm                                                           |
|      | m∠D                             | = 140°(ii)                                  | From (i)                                                                    |
|      | $m\angle A + m\angle 1$         | $= 180^{\circ}$                             | $\overline{AD} \parallel \overline{BC}$ and $\overline{AB}$ is transversal. |
|      | $m\angle A + 140^{\circ}$       | = 180°                                      | (Interior angles)                                                           |
|      | $m\angle A + 140$ $m\angle A =$ |                                             | From (i)                                                                    |
|      | m∠A =                           | 40°(iii)                                    |                                                                             |
|      | m∠C =                           | m∠A                                         | Opp. angles                                                                 |
|      | m∠C =                           | $40^{\rm o}$                                | From (iii)                                                                  |
| Thus | m∠1 =                           | $140^{\circ}$ , m $\angle$ C = $40^{\circ}$ | at .                                                                        |
|      |                                 |                                             | ALIA-ROMONIONAL TO IN THE RESIDENCE SALES                                   |

# Theorem

If two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram.



# Given

In a quadrilateral ABCD,  $\overline{AB} \cong \overline{DC}$  and  $\overline{AB} \parallel \overline{DC}$ 

## To prove

ABCD is a parallelogram.

# Construction

Join the point B to D and in the figure, name the angles as indicated:

$$\angle 1$$
,  $\angle 2$ ,  $\angle 3$  and  $\angle 4$ 

|          | Statements                                                                                            |             | Reasons                                                                 |  |
|----------|-------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------|--|
| In       | $\frac{\Delta ABD \leftrightarrow \Delta CDB}{\overline{AB} \cong \overline{DC}}$                     |             | Given                                                                   |  |
|          | $\frac{\angle 2 \cong \angle 1}{\overline{BD} \cong \overline{BD}}$                                   |             | Alternate angles Common                                                 |  |
| ∴<br>Now | $\triangle ABD \cong \triangle CDB$ $\angle 4 \cong \angle 3$ $\overline{AD} \parallel \overline{BC}$ | (i)<br>(ii) | S.A.S. postulate (corresponding angles of congruent triangles) From (i) |  |

and  $\overline{AD} \cong \overline{BC}$ 

....(iii)

Corresponding sides of congruent  $\Delta s$ 

Also ABII DC

....(iv)

Hence ABCD is a parallelogram

From (ii) – (iv)

Given

# **EXERCISE 11.2**

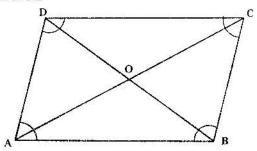
- (1) Prove that a quadrilateral is a parallelogram if its
  - (a) Opposite angles are congruent.
  - (b) Diagonals bisect each other.

Given Given ABCD is a quadrilateral.

$$m\angle A = m\angle C$$
,

$$m\angle B = m\angle D$$

To prove ABCD is a parallelogram.



### Proof

| Statements                                                    | Reasons                                  |  |  |
|---------------------------------------------------------------|------------------------------------------|--|--|
| m∠A=m∠C (i)                                                   | Given                                    |  |  |
| m∠B=m∠D (ii)                                                  | Given                                    |  |  |
| Now                                                           |                                          |  |  |
| $m\angle A + m\angle B + m\angle C + m\angle D = 360^{\circ}$ | Angles of a quad.                        |  |  |
| $m\angle A + m\angle B + m\angle A + m\angle B = 360^{\circ}$ | From (i), (ii)                           |  |  |
| $m\angle A + m\angle A + m\angle B + m\angle B = 360^{\circ}$ | Rearranging                              |  |  |
| $2m\angle A + 2m\angle B = 360^{\circ}$                       |                                          |  |  |
| $(m\angle A + m\angle B) = 360^{\circ}/2 = 180^{\circ}$       | Dividing by 2                            |  |  |
| ∴ AD II BC                                                    | As $m\angle A + m\angle B = 180^{\circ}$ |  |  |
| Similarly it can be                                           | (sum of interior angles)                 |  |  |
| Proved that AB     CD                                         |                                          |  |  |
| Hence ABCD is a parallelogram.                                |                                          |  |  |

# (2) prove that a quadrilateral is a parallelogram if its opposite sides are congruent.

# Given

In quadrilateral

ABCD, 
$$\overline{AB} \cong \overline{DC}$$
,

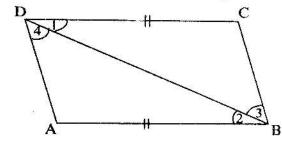
$$\overline{AD} \cong \overline{BC}$$

# Required

ABCD is a II gm

AB || CD, AD || BC





Join point B to D and name the angles  $\angle 1$ .  $\angle 2$ .  $\angle 3$  and  $\angle 4$ 

### Proof

|                         | Stateme                                             | nts   | Reasons                                     |
|-------------------------|-----------------------------------------------------|-------|---------------------------------------------|
|                         | $\triangle$ ABD $\leftrightarrow$ $\triangle$ CD    | В     |                                             |
|                         | $\overline{AD} \cong \overline{CB}$                 |       | Given                                       |
|                         | $\overline{AB} \cong \overline{CD}$                 |       | Given                                       |
|                         | $\overline{\mathrm{BD}}\cong\overline{\mathrm{BD}}$ |       | Common                                      |
|                         | $\triangle ABD \cong \triangle CDB$                 |       | S.S.S ≅ S.S.S                               |
| So                      | ∠2 ≅ ∠1                                             | (i)   | Corresponding angles of Congruent triangles |
|                         | ∠4 ≅ ∠3                                             | (ii)  | Alternate angles                            |
| Hence                   | ABIICD                                              | (iii) | ∠2 and ∠1 are congruent                     |
| Similarly BC    AD (iv) |                                                     | (iv)  | Alternate angles ∠3, ∠4 congruent           |
|                         | :. ABCD is a parallelogram.                         |       | From iii, iv                                |
|                         |                                                     |       |                                             |

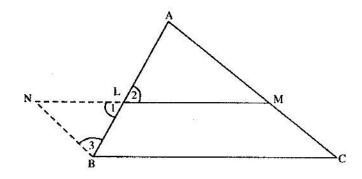
## Theorem

The line segment, joining the mid-points of two sides of a triangle, is parallel to the third side and is equal to one half if its length.

Given In  $\triangle ABC$ , the midpoints of  $\overline{AB}$  and  $\overline{AC}$  are L and M respectively.

## To Prove

$$\overline{LM} \parallel \overline{BC}$$
 and  $\overline{mLM} = \frac{1}{2} \overline{mBC}$ 



## Construction

Join M to L and produce  $\overline{ML}$  to N such that  $\overline{ML} \cong \overline{LN}$  Join N to B. and in the figures name the angles  $\angle 1$ ,  $\angle 2$ ,  $\angle 3$  and  $\angle 4$  as shown.

|    | Statements                              | Reasons         |
|----|-----------------------------------------|-----------------|
| In | $\Delta BLN \leftrightarrow \Delta ALM$ |                 |
|    | $\overline{BL} \cong \overline{AL}$ ,   | Given           |
|    | ∠1 ≅ ∠2                                 | Vertical angles |
|    | $\overline{NL} \cong \overline{ML}$     | Construction    |

| <i>:</i> .    | $\Delta BLN \cong \Delta ALM$                                                                                                                                                                                                                                                                                                                                      |             | S.A.S. postulate                                                                                                                                                                         |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and           | $\angle A \cong \angle 3$ $\overline{NB} \cong \overline{AM}$                                                                                                                                                                                                                                                                                                      | (i)<br>(ii) | (corresponding angles of congruent triangles)  (corresponding sides of congruent triangles)                                                                                              |
| But Thus. ∴ ∴ | $\overline{NB} \parallel \overline{AM}$ $\overline{NB} \parallel \overline{MC}$ $\overline{MC} \cong \overline{AM}$ $\overline{NB} \cong \overline{MC}$ $\overline{BCMN}$ is a parallelogical $\overline{BC} \parallel \overline{LM}$ or $\overline{BC} \parallel \overline{N}$ $\overline{BC} \cong \overline{NM}$ $\overline{mLM} = \frac{1}{2} m \overline{NM}$ | (vi)        | From (i), alternate ∠s  (M is a point of AC)  Given  {from (ii) and (iv)}  From (iii) and (v)  (Opposite sides of a parallelogram BCMN)  (Opposite sides of parallelogram)  Construction |
| Hence         | $m\overline{LM} = \frac{1}{2} m\overline{BC}$                                                                                                                                                                                                                                                                                                                      |             | {from (vi) and (vii)}                                                                                                                                                                    |

# Example

The line segments, joining the mid-points of the sides of a quadrilateral, taken in order, form a parallelogram. D R C

# Given

A quadrilateral ABCD, in which P is the mid-point of  $\overline{AB}$ , Q is the mid-point of  $\overline{BC}$ , R is the mid-point of  $\overline{CD}$ , S is the mid-point of  $\overline{DA}$ .

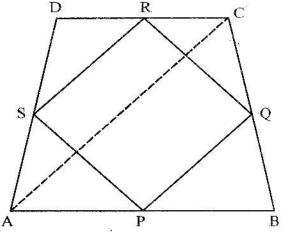
P is joined to Q, Q is joined to R. R is joined to S and S is joined to P.

# To prove

PQRS is a parallelogram.

# Construction

Join A to C.



|      | Statements                                                                                           | Reasons                                                                                   |
|------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| In   | ΔDAC,                                                                                                |                                                                                           |
|      | $ \frac{\overline{SR} \parallel \overline{AC}}{m\overline{SR} = \frac{1}{2}m\overline{AC}} $         | S is the mid-point of $\overline{DA}$ R is the mid-point of $\overline{CD}$               |
| In   | $\Delta BAC$ , $\overline{PQ} \parallel \overline{AC}$ $m\overline{PQ} = \frac{1}{2} m\overline{AC}$ | P is the mid-point of $\overline{AB}$<br>Q is the mid-point of $\overline{BC}$            |
|      | $\overline{SR} \parallel \overline{PQ}$ $m\overline{SR} = m\overline{PQ}$                            | Each $\parallel \overline{AC} \parallel$ $= \frac{1}{2} m \overline{AC}$                  |
| Thus | PQRS is a parallelogram                                                                              | $\overline{SR} \parallel \overline{PQ}, m\overline{SR} = m\overline{PQ} \text{ (proved)}$ |

# EXERCISE 11.3

(1) Prove that the line-segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

O

S

# Given

ABCD is a quadrilateral.

P, Q, R, S are the mid-points of  $\overline{AB}, \overline{BC}, \overline{CD}, \overline{DA}$  respectively.

P is joined to R, Q is joined to S.  $\overline{SQ}, \overline{PR}$  intersect at point "O"

# To Prove

$$\overline{OP} \cong \overline{OR}, \overline{OS} \cong \overline{OQ}$$

Construction Join P, Q, R, S in order, join A to C.

| Statements                                        | Reasons                                                                                   |
|---------------------------------------------------|-------------------------------------------------------------------------------------------|
| $\overline{SR} \parallel \overline{AC}$ (i)       | In $\triangle ADC$ . S, R are mid-points Of $\overrightarrow{AD}$ , $\overrightarrow{DC}$ |
| $m\overline{SR} = \frac{1}{2}m\overline{AC}$ (ii) |                                                                                           |

| And $\overline{PQ} \parallel \overline{AC}$ (iii)              | In ΔABC; P, Q are mid-points |
|----------------------------------------------------------------|------------------------------|
| $m\overline{PQ} = \frac{1}{2}m\overline{AC}$ (iv)              | of AB, BC                    |
| $\therefore  \overline{PQ} \  \overline{SR} \qquad \qquad (v)$ | from (i), and (iii)          |
| $m\overline{PQ} = m\overline{SR}$ (vi)                         | From (ii) and (iv)           |
| Similarly PSIIQR                                               |                              |
| $m\overline{PS} = m\overline{QR}$                              |                              |
| Hence PQRS is a parallelogram                                  |                              |
| Now $\overline{PR}$ , $\overline{SQ}$ are the diagonals        |                              |
| Of PQRS that intersect at point O.                             |                              |
| ∴ OP≅OR                                                        |                              |
| ∴ <del>OS</del> ≅ <del>OQ</del>                                |                              |
| The supplier of an 19 fifty                                    | Diagonals of a parallelogram |
|                                                                | Bisect each other.           |

(2) Prove that the line-segments joining the mid-points of the opposite sides of a rectangle are the right-bisectors of each other.

D

R

C

# Given

ABCD is a rectangle.

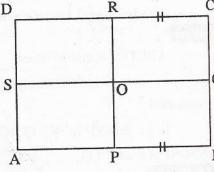
and P, Q, R, S are the mid-points of sides

 $\overline{AB}$ ,  $\overline{BC}$ ,  $\overline{CD}$  and  $\overline{DA}$ , respectively.

P is joined to R, S to Q These intersect at "O"

## To Prove

$$\overline{OQ} \cong \overline{OS}, \overline{OR} \cong \overline{OP} \text{ and } \overline{RP} \perp \overline{SQ}$$



| S                                 | atements                         | Reasons                     |
|-----------------------------------|----------------------------------|-----------------------------|
| ABII CD                           |                                  | opposite sides of rectangle |
| $\overline{AP} = \overline{DR}$   | (i)                              |                             |
| $m\overline{AB} = n$              | nCD                              |                             |
| $\frac{1}{2}$ m $\overline{AB}$ = | $=\frac{1}{2}$ m $\overline{CD}$ |                             |
| $m\overline{AP} = r$              | nDR (ii)                         |                             |
| . APRD is                         | rectangle                        |                             |

II. OR ≅ OP

Similarly OQ ≅ OS

Now In rectangle APRD

mDA = mRP

1/2 mDA = mRP

mDS=mRO

II. DS||RO,

Hence SORD is rectangle.

II. m∠SOR = 90°, RP⊥SQ.

As  $m\angle A = m\angle D = 90^{\circ}$ 

Diagonals of a rectangle are congruent.]

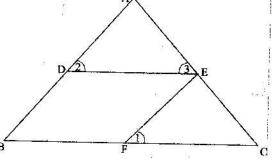
new that the line-segment passing through the mid-point of one side and male to another side of a triangle also bisects the third side.

In  $\triangle ABC$ , D is mid-point  $\overline{AB}$ ,  $\overline{DE}$  BC which meets  $\overline{AC}$  at E.

E is mid-point of

ABandEA≅ EC

Take  $\overline{EF} \| \overline{AB} \|$  which meets  $\overline{BC}$  at F.



|     | Stateme                                                                                                                                                                                                    | ents                         | Reasons                                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| low | BDEF is paralle $ EF \cong DB $ $ EF \cong AD $ $ \angle 1 \cong \angle B $ $ \angle 2 \cong \angle B $ $ \angle 1 \cong \angle 2 $ In $ \Delta ADE \leftrightarrow \Delta 1 $ $ \angle 1 \cong \angle 2 $ | (i)<br>(ii)<br>(iii)<br>(iv) | DE    BF given, EF    DB const. Opposite sides of parallelogram Given Corresponding angles. Corresponding angles. Form (iii) |
|     | ∠3 ≅ ∠C<br>ĀD≅ĒF<br>AADE ≅ ΔEFC                                                                                                                                                                            |                              | Form (iv) Corresponding angles. Form (ii) A.A.S   A.A.S                                                                      |

| ∴ ĀĒ≅ĒĒ | Corresponding sides of |
|---------|------------------------|
|         | congruent triangles.   |
|         |                        |

# Theorem

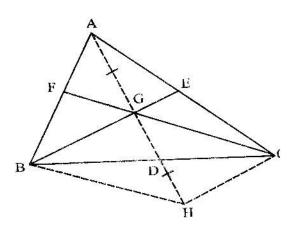
The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.

# Given

 $\Delta ABC$ 

# To Prove

 $\triangle ABC$ The medians of the concurrent and the point of concurrency is the point of trisection of each median.



# Construction

Draw two medians  $\overline{BE}$  and  $\overline{CF}$  of the  $\triangle ABC$  which intersect each other at point ( Join A to G and produce it to point H such that  $\overline{AG} \cong \overline{GH}$ . Join H to the points B and C.

 $\overline{AH}$  Intersects  $\overline{BC}$  at the point D.

| roof        |                                                                                                                                                                                                                         | Bernand                                                                                                                     |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
|             | Statements                                                                                                                                                                                                              | Reasons                                                                                                                     |  |
| In          | ΔACH,<br>GE II HC,                                                                                                                                                                                                      | G and E are mid-points of sides AH and AC respectively                                                                      |  |
| or          | BEII HC(i)                                                                                                                                                                                                              | G is a point of BE                                                                                                          |  |
| Simi :: and | larly $\overline{CF} \parallel \overline{HB}$ (ii)  BHCG is a parallelogram $m\overline{GD} = \frac{1}{2}m\overline{GH}$ (iii) $\overline{BD} \cong \overline{CD}$                                                      | from (i) and (ii)  (Diagonals $\overline{BC}$ and $\overline{GH}$ of a parallelogram BHCG intersect each other at point D). |  |
| the 1       | $\overrightarrow{AD}$ is a median of $\triangle ABC$<br>lians $\overrightarrow{AD}$ , $\overrightarrow{BE}$ and $\overrightarrow{CF}$ pass through<br>point G<br>w $\overrightarrow{GH} \cong \overrightarrow{AG}$ (iv) | (G is the intersecting point of BE and CF and AD pass through it.) Construction                                             |  |

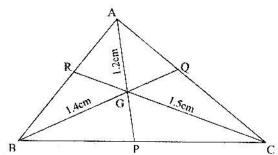
$$m\overline{GD} = \frac{1}{2}m\overline{AG}$$

and G is the point of trisection of  $\overline{AD}$  –(v) similarly it can be proved that G is also the point of trisection of  $\overline{CF}$  and  $\overline{BE}$ .

from (iii) and (iv)

# **EXERCISE 11.4**

(1) The distances of the point of concurrency of the medians of a triangle from its vertices are respectively 1.2cm; 1.4 cm and 1.5 cm. Find the lengths of its medians.



Solution Let ABC be a triangle with center of gravity at G where mAG=1.2cm, BG=1.4cm, mCG=1.5cm

Required To find the length of AP, BQ, CR

#### Proof:

$$m\overline{AP} = \frac{3}{2} \times (mAG)$$

$$= \frac{3}{2} \times 1.2 = 1.8 \text{ cm}$$

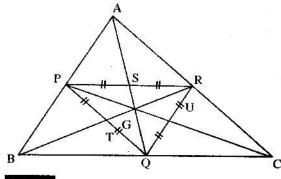
$$m\overline{BQ} = \frac{3}{2} \times (m\overline{BG})$$

$$= \frac{3}{2} \times 1.4 = 2.1 \text{ cm}$$

$$m\overline{CR} = \frac{3}{2} \times (mCG)$$

$$= \frac{3}{2} \times 1.5 = 2.25 \text{ cm}$$

(2) Prove that the point of concurrency of the medians of a triangle and the triangle which is made by joining the mid-points of its sides is the same.



#### Given

In  $\triangle ABC$ ,  $\overline{AQ}$ ,  $\overline{BR}$ ,  $\overline{CP}$  are its medians that are concurrent at point G.  $\triangle PQR$  is formed by joining mid-points of  $\overline{AB}$ ,  $\overline{BC}$ ,  $\overline{CA}$ 

### To Prove

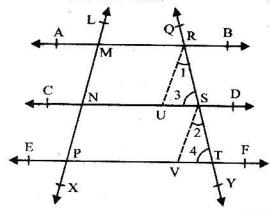
Point G is point of concurrency of triangle PQR.

#### MKOO

|               | Statements                            | Reasons                          |
|---------------|---------------------------------------|----------------------------------|
|               | PR    BC                              | P, R are mid-points of AB and AC |
| ⇒             | PR    BQ (i)                          | 8 5 12 S                         |
|               | RQ  AB                                | P, Q are mid-points of AB and BC |
| $\Rightarrow$ | $\overline{RQ} \  \overline{PB}$ (ii) |                                  |
| ••            | PBQR is a parallelogram.              |                                  |
|               | BR, PQ are its diagonals, that        | bisect each other at T.          |
|               | T is mid-point PQ, similarly          |                                  |
|               | S is mid-point of PR and U is         | mid-point of PO.                 |

## Theorem

If three or more parallel lines make congruent segments on a transversal, they also intercept congruent segments on any other line that cuts them.



### Given

## AB||CD||EF

The transversal  $\overrightarrow{LX}$  intersects  $\overrightarrow{AB}$ ,  $\overrightarrow{CD}$  and  $\overrightarrow{EF}$  at the points M, N and P respectively, such that  $\overrightarrow{MN} \cong \overrightarrow{NP}$ . The transversal  $\overrightarrow{QY}$  intersects them at points R, S and T respectively.

### To Prove

RS≅ST

## Construction

From R, draw  $\overline{RU} \parallel \overline{LX}$ , which meets  $\overline{CD}$  at U. From S, draw  $\overline{SV} \parallel \overline{LX}$  which meets  $\overline{EF}$  at V. as shown in the figure let the angles be labeled as

 $\angle 1$ ,  $\angle 2$ ,  $\angle 3$  and  $\angle 4$ 

| Statements                                                              | Reasons                             |
|-------------------------------------------------------------------------|-------------------------------------|
| MNUR is a parallelogram                                                 | RU   LX (construction)              |
| 8                                                                       | AB    CD (given)                    |
| $\therefore  \overline{MN} \cong \overline{RU} \qquad \qquad \dots (i)$ | (opposite sides of a parallelogram) |

| Simila | ırly,                                     |                     |                                     |
|--------|-------------------------------------------|---------------------|-------------------------------------|
|        | $\overline{NP} \cong \overline{SV}$       | (ii)                | Given                               |
| But    | $\overline{MN} \cong \overline{NP}$       | (iii)               | {from (i), (ii) and (iii)}          |
| ,      | $\overline{RU} \cong \overline{SV}$       |                     | Each is    LX (construction)        |
| Also   | RUII SV                                   |                     | Corresponding angles                |
|        | ∠1 ≅ ∠2                                   |                     | Corresponding angles                |
| and    | ∠3 ≅ ∠4                                   |                     |                                     |
| In     | $\Delta RUS \leftrightarrow \Delta SVT$ , |                     | Proved                              |
|        | RU≅ SV                                    |                     | Proved                              |
|        | ∠1 ≅ ∠2                                   | 11 10 <sup>22</sup> | Proved                              |
|        | ∠3 ≅ ∠4                                   |                     | S.A.A.≅ S.A.A.                      |
|        | $\Delta RUS \cong \Delta SVT$             |                     | (corresponding sides of a congruent |
| Hence  | $\overline{RS} \cong \overline{ST}$       |                     | triangles)                          |

Corollaries (i) A line, through the mid-point of one side, parallel to another side of a triangle, bisects the third side.



In  $\triangle ABC$ , D is the mid-point of  $\overline{AB}$ .

DE! BC which cuts AC at E.

## To prove

 $\overline{AE} \cong \overline{EC}$ 

## Construction

Through A, draw LM | BC.

### Proof

| Statements                                                                                 | Reasons                             |
|--------------------------------------------------------------------------------------------|-------------------------------------|
| Intercepts cut by $\overrightarrow{LM}$ , $\overrightarrow{DE}$ , $\overrightarrow{BC}$ on |                                     |
| AC are congruent.                                                                          | Intercepts cut by parallels LM, DE, |
| i.e., $\overline{AC} \cong \overline{EC}$                                                  | BC on AB are congruent (given)      |

В

- (ii) The parallel line from the mid-point of one non-parallel side of a trapezium to the parallel sides bisects the other non-parallel side.
- (iii) If one side of a triangle is divided into congruent segments, the line drawn from the point of division parallel to the other side will make congruent segments on third side.

# Exercise 11.5

1. In the given figure.  $\overrightarrow{AX} \parallel \overrightarrow{BY} \parallel \overrightarrow{CZ} \parallel \overrightarrow{DU} \parallel \overrightarrow{EV}$  and  $\overrightarrow{AB} \cong \overrightarrow{BC} \cong \overrightarrow{CD} \cong \overrightarrow{DE}$  if  $\overrightarrow{mMN} = 1$ cm then

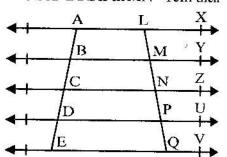
find the length of 
$$\overline{LN}$$
 and  $\overline{LQ}$ 

### Given

In given figure  $\overrightarrow{AX} \parallel \overrightarrow{BY} \parallel \overrightarrow{CZ} \parallel \overrightarrow{DU} \parallel \overrightarrow{EV}$ ,  $\overrightarrow{AB} \cong \overrightarrow{BC} \cong \overrightarrow{CD} \cong \overrightarrow{DE}$ ,  $\overrightarrow{mMN} = 1cm$ 



To find mLN and mLQ



| iven iven I lines through A, B, C, D, E cut $\overline{LQ}$ in |
|----------------------------------------------------------------|
| l lines through A, B, C, D, E cut $\overline{LQ}$ in           |
|                                                                |
| points L, M, N, P, Q.                                          |
| MN = 1cm                                                       |
|                                                                |

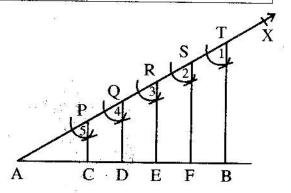
2. Take a line segment of length 5cm and divide it into five congruent parts.

[Hint: Draw an acute angle  $\angle BAX$ . On  $\overline{AX}$  take  $\overline{AP} \cong \overline{PQ} \cong \overline{QR} \cong \overline{RS} \cong \overline{ST}$ .

Joint T to B. Draw line parallel to TB from the points P, Q, R and S.]

### Construction:

- (i) Take a line segment AB of 5cm long.
- (ii) Draw an acute angle ∠BAX.
- (iii) Mark 5 points on  $\overrightarrow{AX}$  at equal distance starting from point A.
- (iv) Join the last point (mark)T to B.
- (v) Draw SF, RE, QD, PC parallel to TB these line segments meet AB at F,E,D,C points.

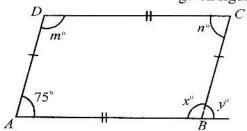


Result: AB has been divided into five equal points

$$\overline{AC} \cong \overline{CD} \cong \overline{DE} \cong \overline{FB}$$

- 3. Fill in the blanks.
- (i) In a parallelogram opposite sides are.... (Parallel / Congruent)
- (ii) In a parallelogram opposite angles are ...... (Equal / Congruent)
- (iii) Diagonals of a parallelogram
  ...... each other at a point.
  (Intersect)
- (iv) Medians of a triangle are ...... (Concurrent)
- (v) Diagonal of a parallelogram divides the parallelogram into two ...... triangles. (Congruent)
- 4. In parallelogram ABCD
  - (i)  $\overline{\text{mAB}} \dots \cong \dots \text{m}\overline{\text{DC}}$
  - (ii)  $m\overline{BC}... \cong ... m\overline{AD}$

- (iii)  $m \angle 1 \cong ...m \angle 3....$
- (iv)  $m \angle 2 \cong ...m \angle 4....$
- 5. Find the unknowns in the given figure.



Given: Let ABCD be the given figure with

$$\overline{AB} \cong \overline{CD}$$

$$\overline{BC} \cong \overline{AD}$$

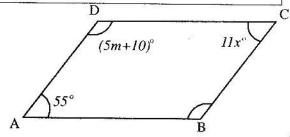
To Find: m°, n°, x°, y°

#### **Proof:**

| Reasons                             |                                                             |
|-------------------------------------|-------------------------------------------------------------|
| $\overline{AB} \cong \overline{CD}$ |                                                             |
| AD≅BC                               |                                                             |
| Opposite interior angles            |                                                             |
| supplementary angles                |                                                             |
| supplementary angles                |                                                             |
| ,                                   |                                                             |
|                                     | AB ≅CD AD≅BC  Opposite interior angles supplementary angles |

6. If the given figure ABCD is a parallelogram, then find x, m.

Given: ABCD is a parallelogram with angles as shown To Find x° and m°

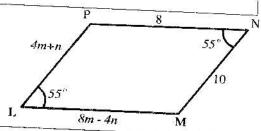


|     | Sec. |    | <b>CONTR</b> | •  |
|-----|------|----|--------------|----|
| 10  | m    |    | v            | ξ. |
| 111 | N.   | ΑT | 13           | •  |
| 100 | _    | -  | ٠.           | ĩ٠ |

| Statement $11 \text{ x}^{\circ} = 55^{\circ}$                                                                                                                         | Reasons                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| $x^{o} = \frac{55^{o}}{11} = 5^{o}$                                                                                                                                   | Opposite angles of parallelogram |
| $x^{\circ} = 5^{\circ}$<br>$(5m + 10)^{\circ} + 55^{\circ} = 180^{\circ}$<br>$(5m + 10)^{\circ} = 180^{\circ} -55^{\circ}$<br>$5m^{\circ} + 10^{\circ} = 125^{\circ}$ | Int. supplementary angles        |
| $5m^{\circ} = 125^{\circ} - 10^{\circ}$<br>$5m^{\circ} = 115^{\circ}$<br>$m^{\circ} = 23^{\circ}$                                                                     |                                  |

7. The given figure LMNP is a parallelogram. Find the value of m, n.

Given: The parallelogram LMNP with lengths and angles as shown to find: m° and n° Proof:



| Opposite sides of llgm |
|------------------------|
| Opposite side of   gm  |
|                        |
|                        |

$$\frac{6m - 4n = 8}{24m = 40}$$

$$\frac{16m + 4n = 40}{24m = 48}$$

$$m = \frac{48}{24} = 2$$
Put in (i)
$$4(2) + n = 10$$

$$8 + n = 10$$

$$n = 10 - 8 \implies n = 2$$

8. In the question 7, sum of the opposite angles of the parallelogram is 110°, find the remaining angles.

Given: LMNP is a parallelogram with angles 55°, 55° as shown To Find: All angles

| Reasons                                             |                 |
|-----------------------------------------------------|-----------------|
| Interior angles                                     | _               |
| at                                                  | 65              |
| 0                                                   |                 |
| Opposite angles $\therefore \angle P = 125^{\circ}$ |                 |
|                                                     | Opposite angles |