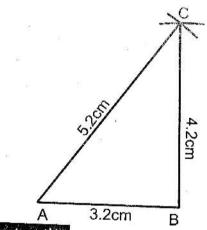
PRACTICAL GEOMETRY-TRIANGLES

Exercise 17.1


- 1. Construct a ΔABC, in which:
- (i) $\overline{\text{mAB}} = 3.2\text{cm}, \ \overline{\text{mBC}} = 4.2\text{cm},$ $\overline{\text{mCA}} = 5.2\text{cm}$

Given

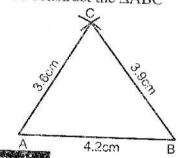
The sides $\overline{mAB} = 3.2cm$, $\overline{mBC} = 4.2cm$, $\overline{mCA} = 5.2cm$ of ΔABC

Required

To construct the ΔABC

Construction

- (i) Draw a line segment $\overline{\text{mAB}} = 3.2\text{cm}$
- (ii) With centre B and radius 4.2cm, draw an arc.
- (iii) With centre A and radius 5.2cm, draw another arc which meet previous arc at point C.
- (iv) Join C to B and A.


Then ABC is the required Δ .

(ii) $\overline{\text{mAB}} = 4.2 \text{cm}, \overline{\text{mBC}} = 3.9 \text{cm},$ $\overline{\text{mCA}} = 3.6 \text{cm}$

Given

The sides $\overline{\text{mAB}} = 4.2 \text{cm}$, $\overline{\text{mBC}} = 3.9 \text{cm}$, $\overline{\text{mCA}} = 3.6 \text{cm}$ of ΔABC Required

To construct the $\triangle ABC$

Construction

- (i) Draw a line segment $\overline{\text{mAB}} = 4.2 \text{cm}$
- (ii) With centre B and radius 3.9cm, draw an arc.
- (iii) With centre A and radius 3.6cm, draw another arc which meet previous arc at point C.
- (iv) Join A to C and B to C.

Then ABC is the required Δ .


(iii) $\overline{MAB} = 4.8 \text{cm}, \ \overline{MBC} = 3.7 \text{cm},$ $\overline{M} \angle B = 60^{\circ}$

Given

The sides mAB = 4.8cm, mBC = 3.7cm and m \angle B = 60° of \triangle ABC

Required

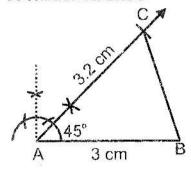
To construct the ΔABC

Construction

- (i) Draw a line segment $\overline{\text{mAB}} = 4.8 \text{cm}$
- (ii) At the end point B of \overline{AB} make $m\angle B = 60^{\circ}$.
- (iii) Cut off mBC=3.7cm from the terminal side of $\angle 60^{\circ}$.
- (iv) Join AC

Then ABC is the required Δ .

(iv) $\overline{MAB} = 3cm$, $\overline{MAC} = 3.2cm$,


$$m\angle A = 45^{\circ}$$
.

Given

The sides mAB = 3cm,

 $\overrightarrow{mAC} = 3.2cm$ and $\overrightarrow{m} \angle A = 45^{\circ} \text{ of } \triangle ABC$

To construct the ΔABC

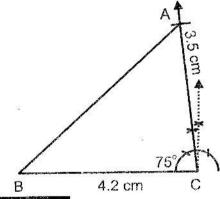
Construction

(i) Draw a line segment $m\overline{AB} = 3cm$.

- (ii) At the end point A of \overline{AB} make $m\angle A = 45^{\circ}$.
- (ii) Cut off $\overline{\text{mAC}} = 3.2\text{cm}$ from the terminal side of $\angle 45^{\circ}$.
- (iv) Join BC

Then ABC is the required Δ .

(v) $\overline{\text{mBC}} = 4.2\text{cm}$, $\overline{\text{mCA}} = 3.5\text{cm}$,


$$m\angle C = 75^{\circ}$$

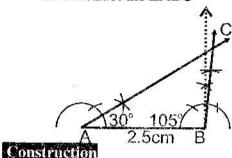
Given

The sides $\overline{mBC} = 4.2$ cm, $\overline{mCA} = 3.5$ cm and $\overline{m} \angle C = 75^{\circ}$ of ΔABC

Required

To construct the ΔABC

Construction


- (i) Draw a line segment $m\overline{BC} = 4.2cm$.
- (ii) At the end point C of \overline{BC} make $m\angle C = 75^{\circ}$.
- (iii) Cut off mAC = 3.5cm from the terminal side of $\angle 75^{\circ}$.
- (iv) Join AB.

Then ABC is the required Δ .

(vi) $mAB = 2.5cm, m\angle A = 30^{\circ},$ $m\angle B = 105^{\circ}.$ The side $\overrightarrow{mAB} = 2.5$ cm and angles $\overrightarrow{m} \angle A = 30^{\circ}$, $\overrightarrow{m} \angle B = 105^{\circ}$ of $\triangle ABC$

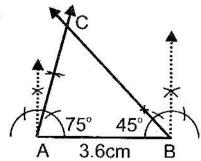
Required

To construct the ΔABC

- (i) Draw the line segment $\overline{\text{mAB}} = 2.5 \text{cm}$.
- (ii) At the end point A of \overline{AB} make $\angle A = 30^{\circ}$.
- (iii) At the end point B of \overline{AB} make $m\angle B = 105^{\circ}$.
- (iv) The terminal sides of these two angles meet in C.

Then ABC is required Δ .

(vii) $mAB = 3.6cm, m\angle A = 75^{\circ},$


 $\mathbf{m} \angle \mathbf{B} = 45^{\circ}$.

Given

The side $\overline{\text{mAB}} = 3.6\text{cm}$ and angles $\overline{\text{m}} \angle A = 75^{\circ}$, $\overline{\text{m}} \angle B = 45^{\circ}$ of $\triangle ABC$

Required

To construct the ΔABC

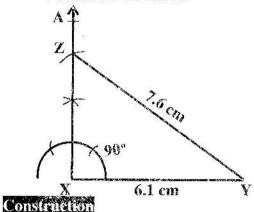
- (i) Draw the line segment $\overline{AB} = 3.6$ cm.
- (ii) At the end point A of \overline{AB} make $m\angle A = 75^{\circ}$.
- (iii) At the end point B of \overline{AB} make $m \angle B = 45^{\circ}$.
- (iv) The terminal sides of these two angles meet at C.

Then ABC is the required Δ .

Q.2. Construct a Δ xyz in which

(i) $m\overline{YZ} = 7.6cm, m\overline{XY} = 6.1cm,$ $m\angle X = 90^{\circ}.$

Given


The sides

 $m\overline{YZ} = 7.6cm, m\overline{XY} = 6.1cm$ and

 $m\angle X = 90^{\circ} \text{ of } \Delta XYZ.$

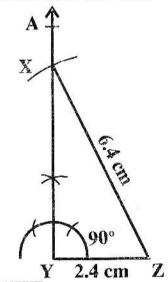
Required

To construct the ΔXYZ

- (i) Draw the line segment $m\overline{XY} = 6.1$ cm
- (ii) At the end point X of \overline{XY} make $m \angle X = 90^{\circ}$.
- (iii) With Y as centre and radius 7.6cm, draw an are which cut terminal side of ∠90° at point Z.
- (iv) Join ZY.

Then XYZ is the required Δ .

(ii) $m\overline{ZX} = 6.4cm, m\overline{YZ} = 2.4cm,$ $m\angle Y = 90^{\circ}$


Given

The sides

 $m\overline{ZX} = 6.4cm$, $m\overline{YZ} = 2.4cm$ and $m\angle Y = 90^o$ of ΔXYZ .

Required

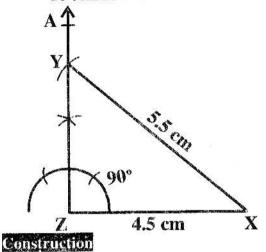
To construct the ΔXYZ

Construction

- (i) Draw the line segment $m\overline{YZ} = 2.4cm$
- (ii) At the end point Y of \overline{YZ} make $m\angle Y = 90^{\circ}$.
- (iii) With Z as centre and radius 6.4cm draw an arc which cut terminal side of ∠90° at point X.
- (iv) Join XZ.

Then XYZ is the required Δ .

(iii) $m\overline{XY} = 5.5cm, m\overline{ZX} = 4.5cm,$ $m\angle Z = 90^{\circ}$


Given

The sides

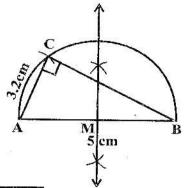
 $m\overline{XY} = 5.5$ cm, $m\overline{ZX} = 4.5$ cm and $m\angle Z = 90^{\circ}$ of ΔXYZ .

Required

To construct the ΔXYZ

- (i) Draw a line segment $m\overline{ZX} = 4.5cm$
- (ii) At the end point Z of \overline{ZX} make $m\angle Z = 90^{\circ}$.
- (iii) With X as centre and radius 5.5cm draw an arc which cut terminal side
 of ∠90° at point Y
- (iv) Join XY.

Then XYZ is the required Δ .


Q.3. Construct a right angled \(\Delta \) measure of whose hypotenuse is 5cm and one side is 3.2cm.

Given

In right angled ∆ hypotenuse is 5cm and one side is 3.2cm

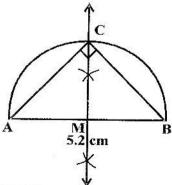
Required

To construct the ΔXYZ

- (i) Draw a line segment $m\overline{AB} = 5cm$.
- (ii) With \overline{AB} as diameter, draw a semi circle.
- (iii) With A as center draw an arc of radius 3.2cm cutting the semi circle in C.
- (iv) Join C with A and B.

Therefore ABC is required triangle with $\angle C=90^{\circ}$

Q.4 Construct a right angled isosceles triangle. Whose hypotenuse is:


i) Hypotenuse 5.2cm long

Given

In right angled isosceles triangle hypotenuse is 5.2 cm.

Required

To construct right angled isosceles triangle

Construction

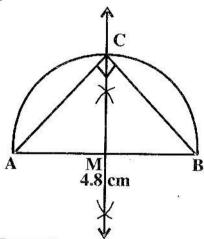
(i) Take $\overline{\text{mAB}} = 5.2$ cm.

- (ii) Find mid-point M of \overline{AB} .
- (iii) With centre as M and radius

 mAM = mMB draw a semi circle

 which intersects the bisector in C.
- (iv) Join A to C and B to C.

Then $\triangle ABC$ is the required right angled isosceles triangle with $\angle C = 90^{\circ}$


(ii) Hypotenuse 4.8 cm

Given

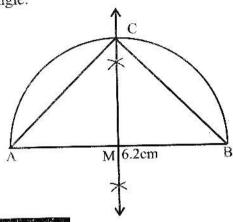
In right angled isosceles triangle hypotenuse is 4.8 cm.

Required

To construct right angled isosceles triangle.

Construction

- (i) Take $\overline{MAB} = 4.8$ cm.
- (ii) Find mid-point M of AB.
- (iii) With centre as M and radius $\overline{MAM} = \overline{MB}$ draw a semi circle which intersects the bisector in C.
- (iv) Join A to C and B to C.


Then $\triangle ABC$ is the required right angled isosceles triangle with $\angle C = 90^{\circ}$

(iii) Hypotenuse 6.2 cm Given

In right angled isosceles triangle hypotenuse is 6.2 cm.

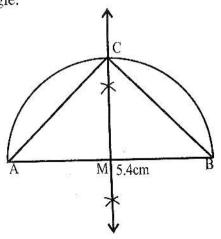
Required

To construct right angled isosceles triangle.

Construction

- (i) Take $\overline{MAB} = 6.2$ cm.
- (ii) Find mid-point M of AB.
- (iii) With centre as M and radius $m\overline{AM} = m\overline{MB}$ draw a semi circle which intersects the bisector in C.
- (iv) Join A to C and B to C.

Then $\triangle ABC$ is the required right angled isosceles triangle with $\angle C = 90^{\circ}$


(iv) Hypotenuse 5.4 cm

Given

In right angled isosceles triangle hypotenuse is 5.4 cm.

Required

To construct right angled isosceles triangle.

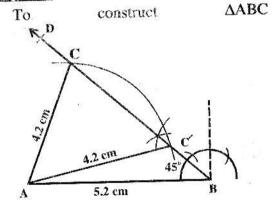
Construction

- (i) Take mAB = 5.4cm.
- (ii) Find mid-point M of AB.
- (iii) With centre as M and radius

 mAM = mMB draw a semi circle
 which intersects the bisector in C.
- (iv) Join A to C and B to C.

Then \triangle ABC is the required right angled isosceles triangle with \angle C = 90°

- Q.5.(Ambiguous case) construct a ΔABC in which
- (i) $\overline{\text{mAC}} = 4.2\text{cm}, \overline{\text{mAB}} = 5.2\text{cm},$


 $m\angle B = 45^{\circ}$.

Given

In $\triangle ABC \text{ mAC} = 4.2\text{cm}, \text{mAB} = 5.2\text{cm},$

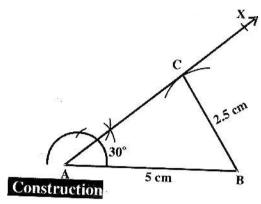
 $m\angle B = 45^{\circ}$.

Required

Construction

- (i) Draw a line segment $\overline{\text{mAB}} = 5.2$ cm.
- (ii) At the end point B of \overline{BA} make $m\angle B = 45^{\circ}$.
- (iii) With centre A and radius 4.2cm draw an arc which cuts \overline{BD} in two distinct points C and C'.
- (iv)Join AC and AC'.

- ∴ ΔABC and Δ ABC' are required triangles.
- (ii) $\overline{mBC} = 2.5$ cm, $\overline{mAB} = 5.0$ cm, $m\angle A = 30^{\circ}$.


Given

In $\triangle ABC$ m $\overline{BC} = 2.5$ cm,

 $\overline{\text{mAB}} = 5.0$ cm, $\overline{\text{m}} \angle A = 30^{\circ}$.

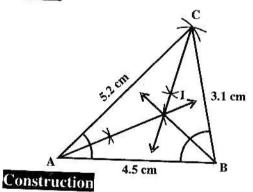
Required

To construct ΔABC

- (i) Take mAB = 5cm.
- (ii) At the end point A of \overrightarrow{AB} make $m\angle A = 30^{\circ}$.
- (iii)With centre B and radius 2.5cm draw an arc which touches AX at point C. (iv) Join BC.
- .: ΔABC is required triangle.

Exercise 17.2

1. Construct the following Δ 's ABC. Draw the bisectors of their angles and verify their concurrency.


(i) $\overline{MAB} = 4.5 \text{cm}$, $\overline{MBC} = 3.1 \text{cm}$, $\overline{MCA} = 5.2 \text{cm}$.

Given

The sides $\overline{\text{mAB}} = 4.5 \text{cm}$, $\overline{\text{mBC}} = 3.1 \text{cm}$, and $\overline{\text{mCA}} = 5.2 \text{cm}$.

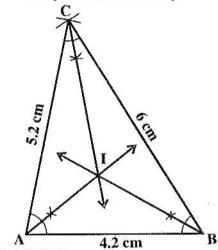
Required

- (i) To construct $\triangle ABC$.
- (ii) To draw its angle bisectors and verify their concurrency.

- (i) Take $\overline{\text{mAB}} = 4.5 \text{cm}$.
- (ii) With A as centre and radius 5.2cm draw an arc.
- (iii) With B as centre and radius 3.1cm draw another arc which intersect the first arc at C.
- (iv) Join AC and BC to complete the $\triangle ABC$.
- (v) Draw bisectors of ∠A, ∠B and
 ∠C meeting each other in the point I.

Hence angle bisectors of the $\triangle ABC$ are concurrent at I which lies within the triangle.

(ii) $\overline{MAB} = 4.2cm, \overline{MBC} = 6cm,$ $\overline{MCA} = 5.2cm$


Given

The sides $\overline{MAB} = 4.2$ cm,

 $\overline{\text{mBC}} = 6\text{cm}$, $\overline{\text{mCA}} = 5.2\text{cm}$ of a ΔABC .

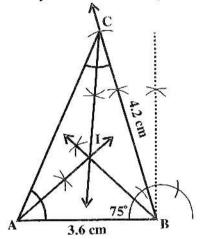
Required

- (i) To construct $\triangle ABC$.
- (ii) To draw its angle bisectors and verify their concurrency.

Construction

- (i) Take $m\overline{AB} = 4.2cm$.
- (ii) With A as centre and radius 5.2cm draw an arc.
- (iii) With B as centre and radius 6cm draw another arc which intersect the first arc at C.
- (iv) Join BC and AC to complete the ΔABC.
- (v) Draw bisectors of ∠A, ∠B and ∠C meeting each other in the point I. Hence angle bisectors of the ΔABC are concurrent at I which lies within the triangle.

(iii) $\overline{MAB} = 3.6 \text{cm}, \overline{MBC} = 4.2 \text{cm},$ $\overline{M} \angle B = 75^{\circ}.$


Given

The sides $\overline{\text{mAB}} = 3.6$ cm,

 $\overline{\text{mBC}} = 4.2 \text{cm}$ and $\overline{\text{m}} \angle B = 75^{\circ} \text{ of } \Delta ABC$

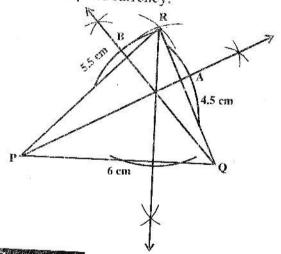
Required

- (i) To construct $\triangle ABC$.
- (ii) To draw its angle bisectors and verify their concurrency.

Construction

- (i) Take $\overline{MAB} = 3.6$ cm.
- (ii) At B draw angle of 75°
- (iii) With B as centre and radius 4.2cm draw are which intersect terminal arm of 75° in C.
- (iv) Join AC to complete the \triangle ABC.
- (v) Draw bisectors of ∠A, ∠B and∠C meeting each other in the point I.

Hence angle bisectors of the $\triangle ABC$ are concurrent at I which lies within the triangle.


- Q.2. Construct Δs PQR. Draw their altitudes and show that they are concurrent.
- (i) $m\overline{PQ} = 6cm, m\overline{QR} = 4.5cm,$ $m\overline{PR} = 5.5cm.$

Givin

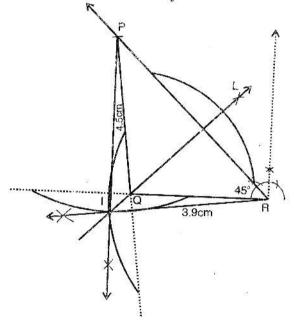
The sides $m\overline{PQ} = 6cm$, $m\overline{QR} = 4.5cm$ and $m\overline{PR} = 5.5cm$ of a ΔPQR .

Required

- (i) To construct \triangle PQR.
- (ii) To draw its altitudes and verify their concurrency.

Construction

- (i) Take $m\overline{PQ} = 6cm$
- (ii) With P as centre draw an arc of radius 5.5 cm.
- (iii) With Q as centre draw an arc of radius 4.5cm, cutting the first in R.
- (iv) Join R with P and Q.
- (v) Draw the altitudes on, \overline{PR} , \overline{QR} and \overline{PQ} which cut each other in I.
- (vi) All altitudes are concurrent.


(ii) $m\overline{PQ} = 4.5 \text{cm}, m\overline{QR} = 3.9 \text{cm},$ $m\angle R = 45^{\circ}.$

Given

The sides $m\overline{PQ} = 4.5$ cm, $m\overline{QR} = 3.9$ cm and $m\angle R = 45^{\circ}$ of ΔPQR

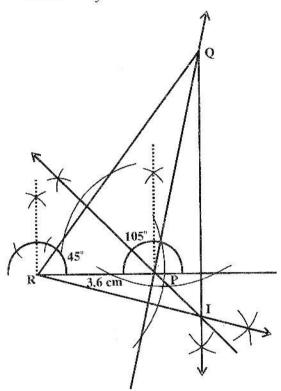
Required

- (i) To construct \triangle PQR.
- (ii) To draw its altitudes and verify their concurrency.

Construction

- (i) Draw $\overline{QR} = 3.9$ cm.
- (ii) Make $\angle R = 45^{\circ}$
- (iii) Cut $\overline{QP} = 4.5$ cm join PQ, ΔPQR is formed.
- (iv) Draw altitudes on \overline{PR} , \overline{QR} and \overline{PQ} they cut each other in I.

The altitudes are concurrent.


(iii) $mRP = 3.6cm, m\angle Q = 30^{\circ},$ $m\angle P = 105^{\circ}.$

Given

 $\overline{MRP} = 3.6$ cm, $m \angle Q = 30^{\circ}$, $m \angle P = 105^{\circ}$.

Required

- (i) To construct \triangle PQR.
- (ii) To draw its altitudes and verify their concurrency.

Construction

$$m\angle P + m\angle Q + m\angle R = 180^{\circ}$$

$$105^{\circ} + 30^{\circ} + m \angle R = 180^{\circ}$$

$$135^{\circ} + m\angle R = 180^{\circ}$$

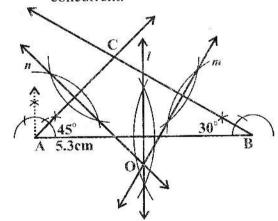
$$m\angle R = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

- (i) Take $m\overline{RP} = 3.6cm$.
- (ii) At P draw an angle of 105°.

- (iii) At R draw an angle of 45°.
- (iv) Terminal arms of both angles meet in point Q. It form Δ PQR.
- (v) Draw the altitudes, of \overline{PQ} and \overline{QR} and \overline{RP} cutting each other in I.

The altitudes are concurrent.

- Q.3. Construct the following triangles ABC. Draw the perpendicular bisectors of their sides and verify their concurrency. Do they meet inside the triangle.
- (i) $\overline{MAB} = 5.3$ cm, $\overline{MAB} = 45^{\circ}$, $\overline{MAB} = 30^{\circ}$


Given

Side $\overline{MAB} = 5.3$ cm and $\overline{MZA} = 45^{\circ}$

 $m\angle B = 30^{\circ}$ of a $\triangle ABC$.

Required

- (i) To construct the ΔABC.
- (ii) To draw perpendicular bisectors of its sides and to verify that they are concurrent.

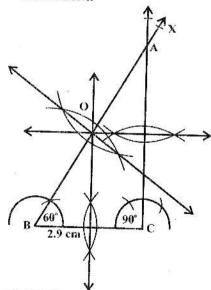
Construction

- (i) Take mAB = 5.3cm
- (ii) At the end point A of \overline{AB} make $m\angle A = 45^{\circ}$.

- (iii) At the end point B of \overline{AB} make $m\angle B = 30^{\circ}$.
- (iv) The terminal sides of these two angles meet at C.

 Then ABC is required Δ .
- (v) Draw perpendicular bisectors of $\overline{AB}, \overline{BC}$ and \overline{CA} meeting each other in the point O.

Hence the three perpendicular bisectors of sides of \triangle ABC are concurrent at O.


(ii)
$$\overline{\text{mBC}} = 2.9 \text{cm}, \, \text{m} \angle \text{A} = 30^{\circ},$$

 $\overline{\text{m}} \angle \text{B} = 60^{\circ}$

Giyen

The side $\overline{mBC} = 2.9$ cm, $m\angle A = 30^{\circ}$ and $m\angle B = 60^{\circ}$ of $\triangle ABC$

Required

- (i) To construct the $\triangle ABC$.
- (ii) To draw perpendicular bisectors of its sides and to verify that they are concurrent.

Construction

$$m\angle A + m\angle B + m\angle C = 180^{\circ}$$

 $30^{\circ} + 60^{\circ} + m\angle C = 180^{\circ}$
 $90^{\circ} + m\angle C = 180^{\circ}$

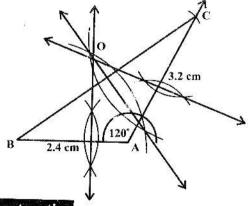
$$m\angle C = 90^{\circ}$$
.

- (i) Take mBC = 2.9cm
- (ii) At the end point B of \overline{BC} make $m\angle B = 60^{\circ}$.
- (iii) At the end point C of \overline{BC} make $m\angle C = 90^{\circ}$.
- (iv) The terminal sides of these two angles meet in A.

Then ABC is required Δ .

(v) Draw perpendicular bisectors of AB, BC and CA meeting each other in the point O.

Hence the three perpendicular bisectors of sides of $\triangle ABC$ are concurrent at O.


(iii)
$$\overline{\text{mAB}} = 2.4\text{cm}, \overline{\text{mAC}} = 3.2\text{cm},$$

 $\overline{\text{m}} \angle A = 120^{\circ}$

Given

The sides $\overline{MAB} = 2.4$ cm, $\overline{MAC} = 3.2$ cm $\overline{MAC} = 120^{\circ}$ of a $\triangle ABC$

Required

- (i) To construct the \triangle ABC.
- (ii) To draw perpendicular bisectors of its sides and to verify that they are concurrent.

Construction

(i) Take $\overline{MAB} = 2.4$ cm

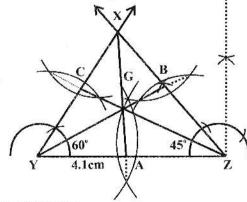
- (ii) At the end point A of \overrightarrow{AB} make $m\angle A = 120^{\circ}$.
- (iii) With centre A, draw an arc of radius 3.2cm which cut terminal arm of ∠A at C.
- (iv) Join B to C

Then ABC is required Δ .

(v) $\frac{Draw}{AB}$ perpendicular bisectors of $\frac{\overline{AB}}{\overline{BC}}$ and $\frac{\overline{CA}}{\overline{CA}}$ meeting each other at the point O.

Hence the three perpendicular bisectors of sides of $\triangle ABC$ are concurrent at O.

Q.4. Construct following Δ 's XYZ. Draw their three medians and show that they are concurrent.


(i)
$$m\overline{YZ} = 4.1cm$$
, $m\angle Y = 60^{\circ}$ and $m\angle X = 75^{\circ}$

Given

The side $\overline{MYZ} = 4.1$ cm, $\overline{MZY} = 60^{\circ}$ and $\overline{MZX} = 75^{\circ}$

Required

- (i) Construct the ΔXYZ .
- (ii) Draw its medians and verify their concurrency.

Construction

$$m\angle X + m\angle Y + m\angle Z = 180^{\circ}$$

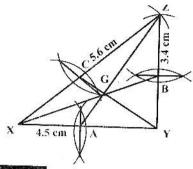
 $75^{\circ} + 60^{\circ} + m\angle Z = 180^{\circ}$
 $135^{\circ} + m\angle Z = 180^{\circ}$

$$m\angle Z = 180^{\circ} - 135^{\circ}$$

 $m\angle Z = 45^{\circ}$.

- (i) Take $m\overline{YZ} = 4.1cm$.
- (ii) At the end point y of \overline{YZ} make $m \angle Y = 60^{\circ}$.
- (iii) At the end point Zof \overline{ZY} make $m\angle Z = 45^{\circ}$
- (iv) The terminal sides of these angles meet at X. Then XYZ is required Δ .
- (v) Draw perpendicular bisectors of the sides YZ, ZX and XY of ΔXYZ and make their midpoints A, B and C respectively.
- (vi) Join Y to midpoint B to get median \overline{YB} .
- (vii) Join Z to midpoint C to get median \overline{ZC} .
- (viii) Join X to mid point A to get median \overline{AX} . The medians of ΔXYZ pass through the same point G.

All medians intersect at point G. Hence medians are concurrent at G.


(ii) $m\overline{XY} = 4.5 \text{cm}, m\overline{YZ} = 3.4 \text{cm},$ $m\overline{ZX} = 5.6 \text{cm}$

Given

The sides $\overline{mXY} = 4.5$ cm, $\overline{mYZ} = 3.4$ cm and $\overline{mZX} = 5.6$ cm of a ΔXYZ .

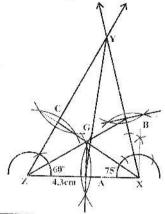
Required

- (i) Construct the ΔXYZ .
- (ii) Draw its medians and verify their concurrency.

- (i) Take mXY = 4.5cm.
- (ii) With Y as centre and radius 3.4 cm draw an arc.
- (iii) With X as centre and radius 5.6cm draw another are cutting first in Z join Z to Y and X to Z.
- (iv) Draw perpendicular bisectors of the sides \overline{XY} , \overline{YZ} and \overline{XZ} of ΔXYZ and make their midpoints A,B and C respectively.
- (v) Join X to mid point B to get median \overline{XB} .
- (vi) Join Y to midpoint C to get medians \overline{YC} .
- (vii) Join Z to midpoint A to get median \overline{ZA} .

All medians intersect at point G. Hence medians are concurrent at G.

(iii) $m\overline{ZX} = 4.3$ cm, $m\angle X = 75^{\circ}$ and $m\angle Y = 45^{\circ}$.


Given

The side $m\overline{ZX} = 4.3$ cm, $m\angle X = 75^{\circ}$ and $m\angle = 45^{\circ}$ of ΔXYZ .

Required

(i) Construct the ΔXYZ .

(ii) Draw its medians and verify their concurrency.

Construction

$$m\angle X + m\angle Y + m\angle Z = 180^{\circ}$$

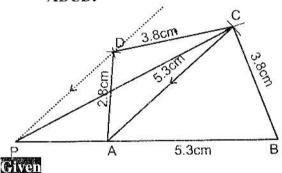
 $75^{\circ} + 45^{\circ} + m\angle Z = 180^{\circ}$
 $m\angle Z + 120^{\circ} = 180^{\circ}$
 $m\angle Z = 180^{\circ} - 120^{\circ}$
 $m\angle Z = 60^{\circ}$

- (i) Take $m\overline{ZX} = 4.3cm$
- (ii) At the end point Z of \overline{ZX} make $m\angle Z = 60^{\circ}$.
- (iii) At the end point X of \overline{XY} make $m \angle X = 75^{\circ}$
- (iv) The terminal sides of these angles meet at Y. Then XYZ is required Δ .
- (v) Draw perpendicular bisectors of the sides ZX, XY and YZ of ΔXYZ and make their midpoints A,B and C respectively.
- (vi) Join Y to midpoint A to get median \overline{YA} .
- (vii) Join Z to the midpoint B to get median \overline{ZB} .

(viii) Join X to the midpoint B to get median \overline{XC} .

All medians intersect at point G. Hence medians are concurrent at G.

Exercise 17.3


1. (i) Construct a quadrilateral ABCD, having

$$m\overline{AB} = m\overline{AC} = 5.3cm$$
,

$$\overrightarrow{mBC} = \overrightarrow{mCD} = 3.8cm$$
 and

$$\overline{MAD} = 2.8$$
cm.

(ii) On the side BC construct a Δ equal in area to the quadrilateral ABCD.

Sides of quadrilateral ABCD

$$\overline{\text{mAB}} = \overline{\text{mBC}} = 5.3 \text{ cm}$$

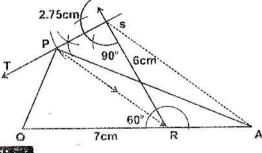
$$\overline{\text{mBC}} = \overline{\text{mCD}} = 3.8 \text{ cm}$$

$$mAD = 2.8 cm$$

Required

- i) To make the quadrilateral ABCD.
- ii) On the side \overline{BC} construct a Δ equal in area to the quadrilateral ABCD.

Construction


- (i) Take $\overline{\text{mAB}} = 5.3 \text{ cm}$.
- (ii) With centre A and B draw arcs with radii 5.3 cm and 3.8 cm respectively cutting each other in C.
- (iii) With C as centre draw an arc of radius 3.8cm, then with A as centre draw

an arc of radius 2.8cm cutting the first in D.

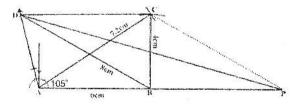
- (iv) Join AD, DC, BCABCD is the required quadrilateral.
- (ii)
- (i) Draw AC
- (ii) Through D draw a line H AC
- (iii) Produce AB which meet parallel line in P.
- (iv) Join P with C

PCB is the required triangle equal in area to quadrilateral ABCD.

2. Construct a Δ equal in area to the quadrilateral PQRS, having $\overline{MQR} = 7cm$, $\overline{MRS} = 6cm$, $\overline{MSP} = 2.75cm$, $m\angle QRS = 60^{\circ}$ and $m\angle RSP = 90^{\circ}$.

Given

Parts of the quadrilateral PQRS are given.


Required

- (i) To make the quadrilateral PQRS.
- (ii) To make a Δ equal in area to the quadrilateral PQRS.

- (i) Take $m\overline{QR} = 7cm$
- (ii) Make $\angle ORS = 60^{\circ}$
- (iii) With R as centre draw an arc of 6 cm radius which cuts terminal arm of $\angle 60^{\circ}$ in S.
- (iv) Make $\angle RSP = 90^{\circ}$
- (v) With S as centre draw an arc of
 2.75 cm radius which cuts terminal
 arm of 90° in P.
- (vi) Join QP.

PQRS is required quadrilateral.

- (vii) Join PR
- (viii) Through S draw a line parallel to \overline{PR} which meet \overline{QR} produced in A.
- (ix) Join AP. Δ APQ is the required triangle equal in area to quadrilateral PQRS
- 3. Construct a \triangle equal in area to the quadrilateral ABCD, having $\overline{MAB} = 6cm$, $\overline{MBC} = 4cm$, $\overline{MAC} = 7.2cm$, $m\angle BAD = 105^{\circ}$ and $\overline{MBD} = 8cm$.

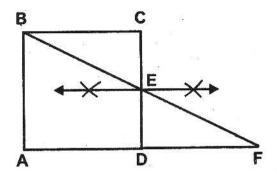
Given

Parts of the quadrilateral ABCD are given

Required

- (i) To make the quadrilateral ABCD.
- (ii) To make a∆ with area equal to that of quadrilateral ABCD.

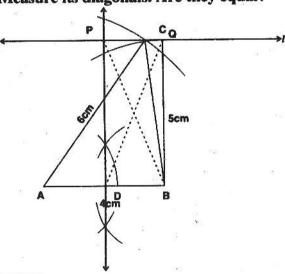
Construction


- (i) Take m AB = 6cm.
- (ii) Make $\angle A = 105^{\circ}$.
- (iii) With B as centre draw an arc of radius 8cm, cutting the arm of ∠A in D.
- (iv) With A as centre draw an arc of radius 7.2cm, with B as centre draw an arc of radius 4cm, cutting the first in C. Join C with B and D.

ABCD is the required quadrilateral.

- (v) Join AC.
- (vi) Join DB. Draw a line parallel to \overline{DB} which meet \overline{AB} produced in P.
- (vii) Join PD.

 Δ ADP is the required triangle equal in area to the quadrilateral ABCD.


4. Construct a right-angled triangle equal in area to a given square.

Given

Square ABCD

1. Construct a Δ with sides 4 cm, 5 cm and 6 cm and construct a rectangle having its area equal to that of the Δ . Measure its diagonals. Are they equal?

Given

4cm, 5cm, 6cm the sides of the triangle Δ .

Required

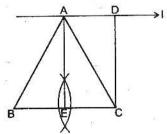
To make a rectangle with area equal to that of the Δ .

Required

To make a right-angle Δ equal in area to the square.

Construction

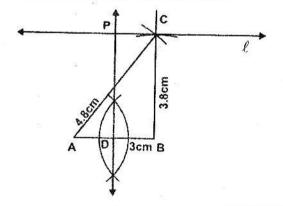
- (i) Bisect CD at E.
- (ii) Join BE and produce it to meet


 AD produced in F.

ΔABF is the required triangle equal in area to square ABCD.

Exercise 17.4

Construction


- (i) Draw $\overline{AB} = 4$ cm.
- (ii) Draw an arc of radius 5cm with centre B and an other arc of radius 6cm with centre A cutting the first in C.
- (iii)Join CA, CB
- (iv) ABC is the required Δ .
- (v) Draw a line ℓ through C || \overline{AB} .
- (vi) Draw the \perp bisector of \overline{AB} in D and cutting the line ℓ at P.
- (vii) Draw BQ \perp on the line ℓ . PQDB is the required rectangle.
- 2. Transform an isosceles Δ into a rectangle.

- (i) Take a line \overline{BC}
- (ii) Draw the \perp bisector of \overline{BC} take any point A on it.
- (iii) Join AB and AC.
- (iv) ΔABC is the isosceles Δ with $\overline{MAB} = \overline{MAC}$.
- (v) Through A draw a line ℓ || BC.
- (vi) Draw CD ⊥ ℓ

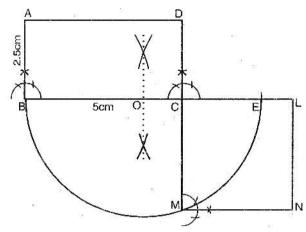
CDAE is the required rectangle equal in area to $\triangle ABC$

3. Construct a $\triangle ABC$ such that $\overline{MAB} = 3cm$, $\overline{MBC} = 3.8cm$, $\overline{MAC} = 4.8cm$. Construct a rectangle equal in area to the $\triangle ABC$, and measure its sides.

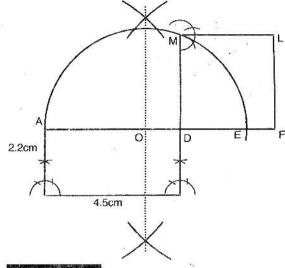
Given

Three sides of the AABC

Required


To construct a rectangle with area equal to that of the ΔABC .

Construction


- (i) Take $m \overline{AB} = 3cm$
- (ii) With B as centre draw an arc of radius 3.8cm, with A as centre draw another arc of radius 4.8cm, cutting the first in C.
- (iii) Join B with C and A.
- (iv) ABC is the required Δ .
- (v) Through C draw a line ℓ | AB.
- (vi) Draw the ± bisector of \overline{AB} cutting the line ℓ in P.
- (vii) PCDB is the required rectangle. Measures of sides of rectangle PCDB are; $m\overline{PD} = 3.8cm$, $m\overline{DB} = 1.5cm$

Exercise 17.5

1. Construct a rectangle whose adjacent sides are 2.5 cm and 5cm respectively. Construct a square having area equal to the given rectangle.

- (i) Make the rectangle ABCD with given lengths of sides.
- (ii) Produce \overline{BC} and cut $m\overline{CE} = m\overline{CD}$
- (iii) Bisect BE at O.
- (iv) With O as centre and \overline{OB} radius draw a semicircle cutting \overline{DC} produced in M.
- (v) With \overline{CM} as side complete the square CMNL.
- 2. Construct a square equal in area to a rectangle whose adjacent sides are 4.5 cm and 2.2 cm respectively. Measure the sides of the square and find its area and compare with the area of the rectangle.

Construction

- (i) Make the rectangle ABCD with given sides.
- (ii) Produce AD and cut mDE=mDC.
- (iii) Bisect AE at O.
- (iv) With O as centre and \overline{OA} radius draw a semicircle cutting \overline{CD} produced in M.
- (v) With DM as side complete the square DFLM.
- (vi) Side of the square (average) = 3.15cm Area = $3.15 \times 3.15 = 9.9$ cm² Area of the rectangle = 2.2×4.5

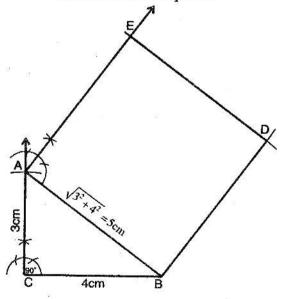
=9.9cm² (equal to area of square)

- 3. In Q.2 above verify by measurement that the perimeter of the square is less than that of the rectangle.
- (i) Side of the square = 3.15cm Perimeter $P_1 = .4 \times 3.15$

Sides of the rectangle are 4.5cm, 2.2cm Perimeter $P_2 = 2(4.5 + 2.2)$

= 13.4cm

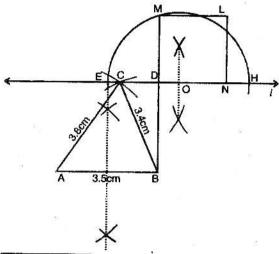
= 12.60 cm


Perimeter
$$P_2 = 2(4.$$

= 2(6.7)

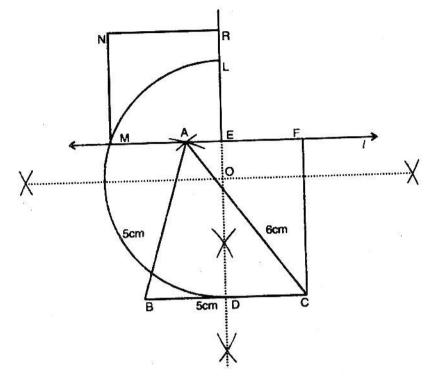
$P_1 < P_2$ verified

4. Construct a square equal in area to the sum of two squares having sides 3 cm and 4 cm respectively.


Construction

- (i) Make a right angled $\triangle ABC$ with $\overline{AC} = 3 \text{cm}$, $\overline{BC} = 4 \text{cm}$.
- (ii) Using Pythagoras theorem $\sqrt{|AC|^2 + |BC|^2} = \sqrt{|AB|^2}$ $\sqrt{(3)^2 + (4)^2} = \sqrt{|AB|^2}$ 5cm = |AB|
- (ii) With \overline{AB} as side make square ABDE.
- (iii) ABDE is the required area of square equal in area to the sum of the areas of two squares.

- 5. Construct a Δ having base 3.5 cm and other two sides equal to 3.4 cm
- 6. Construct a Δ having base 5 cm and other sides equal to 5 cm and 6 cm. Construct a square equal in area to given Δ .


and 3.8 cm respectively. Transform it into a square of equal area.

Construction

- (i) Make the \triangle ABC with the given sides.
- (ii) Draw the \perp bisector of \overline{AB} and a line ℓ through C || \overline{AB} cutting each other in E.
- (iii) Draw BD⊥ ℓ.
- (iv) BDEF is a rectangle.
- (v) Produce \overline{ED} , cut $\overline{DH} = \overline{DB}$.
- (vi) Bisect EH at O.
- (vii) With O as centre and OE radius draw a semicircle cutting BD produced in M.
- (viii) With \overline{DM} as side, complete the square DNLM.

This is the required square equal in area to $\triangle ABC$.

- (i) Draw BC = 5cm.
- (ii) Draw an arc of radius 6cm with centre C and another arc of radius 5cm with centre B cutting first in A.
- (iii) Through A draw a line $\ell \sqcap BC$.
- (iv) Draw the \perp bisector of BC cutting the line ℓ in E.
- (v) Draw CF \perp on ℓ . CDEF is the rectangle.

- (vi) Produce \overline{DE} and cut $\overline{EL} = \overline{EF}$, bisect \overline{DL} at O.
- (vii) Draw a semicircle with centre O and radius $\overline{OL} = \overline{OD}$, cutting l in M.
- (viii) Draw a square EMNR with side EM.

This is the required square equal in area to $\triangle ABC$.

OBJECTIVE

1.	A triangle having	g two si	des congruent	
	is called:		*	
	(a) Scalene	(b)	Right angled	
	(c) Equilateral	(d)	Isosceles	
2.	A quadrilateral having each angle			
	equal to 90° is called			
	(a)Parallelogram (b)Rectangle			
	(c)Trapezium	(d) F	Chombus	

The right bisectors of the three sides of a triangle are ____ Collinear (b) (a)Congruent Parallel (d) (c)Concurrent The _ altitudes of an isosceles triangle are congruent: Three (a)Two (b) None (d) (c)Four

 5. A point equidistant from the end points of a line segment is on its	congruent then the triangle will be: (a) Isosceles (b) Equilateral (c) Right angled (d) Acute angled 12. A line segment joining a vertex of a triangle to the midpoint of its opposite side is called a of the triangle: (a) Altitude (b) Median (c) Angle bisector (d) Right bisector 13. A line segment from a vertex of triangle perpendicular to the line containing the opposite side, is called an of the triangle: (a) Altitude (b) Median (c) Angle bisector (d) Right bisector 14. The point of concurrency of the three altitudes of a Δ is called its (a) Ortho centre (b) In centre (c) Circum centre (d) None 15. The internal bisector of the angle of a triangle meet at a point called the of the triangle: (a) In centre (b) Ortho centre (c) Circum centre (c) None 16. The point of concurrency of the three perpendicular bisectors of the sides of a triangle is called the of the triangle. (a) Circum centre (b) In centre (c) Circum centre (c) None
1. d 2. b 3. c 6. b 7. a 8. c 11. a 12. b 13. a 16. a	4. a 5. b 9. d 10. a 14. a 15. a